Immunopathology and therapeutic chemistry, UPR3572 CNRS, Laboratory of excellence Medalis, 67000 Strasbourg, France; University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
Biopathology of myelin, neuroprotection and therapeutic strategies, INSERM UMR_S1119, University of Strasbourg, 67000 Strasbourg, France.
Autoimmun Rev. 2017 Aug;16(8):856-874. doi: 10.1016/j.autrev.2017.05.015. Epub 2017 May 29.
Autophagy is a metabolically-central process that is crucial in diverse areas of cell physiology. It ensures a fair balance between life and death molecular and cellular flows, and any disruption in this vital intracellular pathway can have consequences leading to major diseases such as cancer, metabolic and neurodegenerative disorders, and cardiovascular and pulmonary diseases. Recent pharmacological studies have shown evidence that small molecules and peptides able to activate or inhibit autophagy might be valuable therapeutic agents by down- or up-regulating excessive or defective autophagy, or to modulate normal autophagy to allow other drugs to repair some cell alteration or destroy some cell subsets (e.g. in the case of cancer concurrent treatments). Here, we provide an overview of neuronal autophagy and of its potential implication in some inflammatory diseases of central and peripheral nervous systems. Based on our own studies centred on a peptide called P140 that targets autophagy, we highlight the validity of autophagy processes, and in particular of chaperone-mediated autophagy, as a particularly pertinent pathway for developing novel selective therapeutic approaches for treating some neuronal diseases. Our findings with the P140 peptide support a direct cross-talk between autophagy and certain central and peripheral neuronal diseases. They also illustrate the fact that autophagy alterations are not evenly distributed across all organs and tissues of the same individual, and can evolve in different stages along the disease course.
自噬是一种代谢中心过程,在细胞生理学的各个领域都至关重要。它确保了生与死的分子和细胞流之间的公平平衡,而这种重要的细胞内途径的任何中断都可能导致主要疾病,如癌症、代谢和神经退行性疾病、心血管和肺部疾病。最近的药理学研究表明,能够激活或抑制自噬的小分子和肽可能是有价值的治疗剂,通过下调或上调过度或有缺陷的自噬,或调节正常的自噬,使其他药物能够修复一些细胞改变或破坏一些细胞亚群(例如,在癌症联合治疗的情况下)。在这里,我们概述了神经元自噬及其在中枢和周围神经系统的一些炎症性疾病中的潜在作用。基于我们自己以一种名为 P140 的肽为中心的研究,该肽靶向自噬,我们强调了自噬过程的有效性,特别是伴侣介导的自噬,作为开发治疗某些神经元疾病的新型选择性治疗方法的特别相关途径。我们用 P140 肽的研究结果支持自噬与某些中枢和周围神经元疾病之间的直接交叉对话。它们还说明了这样一个事实,即自噬的改变在同一个体的所有器官和组织中并不均匀分布,并且可以在疾病过程的不同阶段演变。