C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia26506, United States.
Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia26506, United States.
J Phys Chem B. 2022 Nov 10;126(44):8970-8984. doi: 10.1021/acs.jpcb.2c04960. Epub 2022 Nov 1.
Field-free capillary vibrating sharp-edge spray ionization (cVSSI) is evaluated for its ability to conduct native mass spectrometry (MS) experiments. The charge state distributions for nine globular proteins are compared using field-free cVSSI, field-enabled cVSSI, and electrospray ionization (ESI). In general, for both positive and negative ion mode, the average charge state () increases for field-free cVSSI with increasing molecular weight similar to ESI. A clear difference is that the is significantly lower for field-free conditions in both analyses. Two proteins, leptin and thioredoxin, exhibit bimodal charge state distributions (CSDs) upon the application of voltage in positive ion mode; only a monomodal distribution is observed for field-free conditions. In negative ion mode, thioredoxin exhibits a multimodal CSD upon the addition of voltage to cVSSI. Extensive molecular dynamics (MD) simulations of myoglobin and leptin in nanodroplets suggest that the multimodal CSD for leptin may originate from increased conformational "breathing" (decreased packing) and association with the droplet surface. These properties along with increased droplet charge appear to play critical roles in shifting ionization processes for some proteins. Further exploration and development of field-free cVSSI as a new ionization source for native MS especially as applied to more flexible biomolecular species is warranted.
无场毛细管振动锐边喷雾电离(cVSSI)的能力用于进行天然质谱(MS)实验。使用无场 cVSSI、场增强 cVSSI 和电喷雾电离(ESI)比较了 9 种球形蛋白质的电荷状态分布。一般来说,对于正离子模式和负离子模式,无场 cVSSI 的平均电荷状态()随着分子量的增加而增加,类似于 ESI。一个明显的区别是,在两种分析中,无场条件下的 明显较低。两种蛋白质,瘦素和硫氧还蛋白,在正离子模式下施加电压时表现出双峰电荷状态分布(CSD);而在无场条件下仅观察到单峰分布。在负离子模式下,向 cVSSI 添加电压会导致硫氧还蛋白出现多峰 CSD。肌红蛋白和瘦素在纳米液滴中的广泛分子动力学(MD)模拟表明,瘦素的多峰 CSD 可能源于构象“呼吸”(包装减少)增加和与液滴表面的关联。这些特性以及增加的液滴电荷似乎在某些蛋白质的电离过程中起着关键作用。需要进一步探索和开发无场 cVSSI 作为天然 MS 的新电离源,特别是应用于更灵活的生物分子物种。