Suppr超能文献

离子淌度-质谱分析捕捉到脂质纳米颗粒对核糖核酸货物包封的结构后果。

Ion Mobility-Mass Spectrometry Captures the Structural Consequences of Lipid Nanoparticle Encapsulation on Ribonucleic Acid Cargo.

机构信息

Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

J Am Chem Soc. 2024 Nov 20;146(46):31885-31891. doi: 10.1021/jacs.4c11066. Epub 2024 Nov 7.

Abstract

Ribonucleic acids (RNAs) are becoming increasingly significant in our search for improved biotherapeutics. RNA-based treatments offer high specificity, targeted delivery, and potentially lower-cost options for various debilitating human diseases. Despite these benefits, there are still relatively few FDA-approved RNA-based therapies, with the notable exceptions being the mRNA (mRNA) COVID-19 vaccines, which are delivered using lipid nanoparticle (LNP) systems. LNPs are distinctive drug delivery systems (DDSs) because of their ability to target specific cells, their biocompatibility, and their efficiency in merging with cellular membranes to enhance treatment effectiveness. While the biophysical landscapes of RNA structures in solution are relatively well understood, the impact of the LNP environment on RNA remains less clear. This study uses native ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) techniques to investigate how LNP encapsulation affects RNA structure and stability. We examine how various factors, such as ionization polarity, cofactor binding, lipid types, and lipid ratios, influence LNP-released RNA cargo. Our findings reveal that LNP DDSs induce significant changes in the structures and stabilities of their RNA cargo. However, the extent of these changes strongly depends on the type and composition of the lipids used. We conclude by discussing how IM-MS and CIU can aid in the continued development of more efficient LNP DDSs and improve DDS selection methodologies overall.

摘要

核糖核酸(RNAs)在我们寻找改进的生物疗法方面变得越来越重要。基于 RNA 的治疗方法具有高度的特异性、靶向递送,并且为各种使人衰弱的人类疾病提供了潜在的低成本选择。尽管有这些好处,但获得 FDA 批准的基于 RNA 的治疗方法仍然相对较少,值得注意的例外是使用脂质纳米颗粒(LNP)系统递送的 mRNA(mRNA)COVID-19 疫苗。LNP 是独特的药物递送系统(DDS),因为它们能够靶向特定细胞,具有生物相容性,并且能够与细胞膜融合以提高治疗效果。虽然 RNA 结构在溶液中的生物物理景观相对较好理解,但 LNP 环境对 RNA 的影响仍不明确。本研究使用天然离子淌度-质谱(IM-MS)和碰撞诱导解折叠(CIU)技术研究 LNP 封装如何影响 RNA 结构和稳定性。我们研究了各种因素,如电离极性、辅助因子结合、脂质类型和脂质比例,如何影响 LNP 释放的 RNA 货物。我们的研究结果表明,LNP DDS 会对其 RNA 货物的结构和稳定性产生显著影响。然而,这些变化的程度强烈取决于所用脂质的类型和组成。我们最后讨论了 IM-MS 和 CIU 如何帮助开发更有效的 LNP DDS,并总体上改进 DDS 选择方法。

相似文献

2
Chemistry of Lipid Nanoparticles for RNA Delivery.脂质纳米颗粒的 RNA 递送化学。
Acc Chem Res. 2022 Jan 4;55(1):2-12. doi: 10.1021/acs.accounts.1c00544. Epub 2021 Dec 1.
7
The vast majority of nucleic acid-loaded lipid nanoparticles contain cargo.绝大多数载有核酸的脂质纳米粒都包含货物。
J Colloid Interface Sci. 2024 Nov 15;674:139-144. doi: 10.1016/j.jcis.2024.06.158. Epub 2024 Jun 23.
9
mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability.mRNA-脂质纳米颗粒 COVID-19 疫苗:结构与稳定性。
Int J Pharm. 2021 May 15;601:120586. doi: 10.1016/j.ijpharm.2021.120586. Epub 2021 Apr 9.

本文引用的文献

4
Negative Electrospray Supercharging Mechanisms of Nucleic Acid Structures.核酸结构的负电喷雾超荷机制。
Anal Chem. 2022 Nov 8;94(44):15386-15394. doi: 10.1021/acs.analchem.2c03187. Epub 2022 Oct 26.
5
Membrane Fusion Biophysical Analysis of Fusogenic Liposomes.融合脂质体的膜融合生物物理分析。
Langmuir. 2022 Aug 30;38(34):10430-10441. doi: 10.1021/acs.langmuir.2c01169. Epub 2022 Aug 17.
9
Advances in COVID-19 mRNA vaccine development.新冠病毒信使核糖核酸疫苗研发进展
Signal Transduct Target Ther. 2022 Mar 23;7(1):94. doi: 10.1038/s41392-022-00950-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验