Dong Yuezhen, Wang Bo, Xiang Liqin, Liu Yang, Zhao Xiaopeng, Yin Jianbo
Smart Materials Laboratory, Department of Applied Physics, Northwestern Polytechnical University , Xi'an, 710129, China.
J Phys Chem B. 2017 Jun 29;121(25):6226-6237. doi: 10.1021/acs.jpcb.7b02366. Epub 2017 Jun 15.
Poly(ionic liquid)s (PILs) show potential as new anhydrous polyelectrolyte-based smart electrorheological (ER) materials. Understanding the structure-property relationship on a molecular level is very important for guiding the design of PIL-based ER materials. In this paper, a family of (p-vinylbenzyl)trialkylammonium hexafluorophosphate-based PIL particles containing different length of substituent alkyl chains attached to immobile ammonium charged site is synthesized for especially understanding the size effect of side chains on ER property. To exclude the particle shape effect, the PIL particles are controlled to be monodisperse sphere-like morphology with a similar size. The ER property of PIL particles when dispersed in insulating oil is investigated and compared by temperature-modulated rheological test under external electric fields. The dielectric spectroscopy is finally performed to study the mechanism behind the size effect of side chains on the ER property of PIL particles. We demonstrate that the size of side chains on the charged site has a significant impact on the ER effect of PIL particles and the PIL particles with shorter side chains have stronger ER property but degraded temperature dependence, and this is related to the fact that the variation of side chain size alters the transport dynamic of mobile counterions and ion motion-induced interfacial polarization.
聚离子液体(PILs)作为新型的基于无水聚电解质的智能电流变(ER)材料展现出了潜力。在分子层面理解结构-性能关系对于指导基于PIL的电流变材料的设计非常重要。在本文中,合成了一系列基于(对乙烯基苄基)三烷基铵六氟磷酸盐的PIL颗粒,其在固定的铵带电位点上连接有不同长度的取代烷基链,以专门研究侧链尺寸对电流变性能的影响。为了排除颗粒形状的影响,将PIL颗粒控制为具有相似尺寸的单分散球形形态。通过外部电场下的温度调制流变测试,研究并比较了PIL颗粒分散在绝缘油中的电流变性能。最后进行介电谱研究侧链尺寸对PIL颗粒电流变性能影响背后的机制。我们证明,带电位点上侧链的尺寸对PIL颗粒的电流变效应有显著影响,侧链较短的PIL颗粒具有更强的电流变性能,但温度依赖性降低,这与侧链尺寸的变化改变了移动抗衡离子的传输动力学以及离子运动诱导的界面极化这一事实有关。