Suppr超能文献

基于每日CT定量影像组学分析的胰腺癌放化疗期间治疗反应评估:一项探索性研究。

Assessment of treatment response during chemoradiation therapy for pancreatic cancer based on quantitative radiomic analysis of daily CTs: An exploratory study.

作者信息

Chen Xiaojian, Oshima Kiyoko, Schott Diane, Wu Hui, Hall William, Song Yingqiu, Tao Yalan, Li Dingjie, Zheng Cheng, Knechtges Paul, Erickson Beth, Li X Allen

机构信息

Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.

Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.

出版信息

PLoS One. 2017 Jun 2;12(6):e0178961. doi: 10.1371/journal.pone.0178961. eCollection 2017.

Abstract

PURPOSE

In an effort for early assessment of treatment response, we investigate radiation induced changes in quantitative CT features of tumor during the delivery of chemoradiation therapy (CRT) for pancreatic cancer.

METHODS

Diagnostic-quality CT data acquired daily during routine CT-guided CRT using a CT-on-rails for 20 pancreatic head cancer patients were analyzed. On each daily CT, the pancreatic head, the spinal cord and the aorta were delineated and the histograms of CT number (CTN) in these contours were extracted. Eight histogram-based radiomic metrics including the mean CTN (MCTN), peak position, volume, standard deviation (SD), skewness, kurtosis, energy and entropy were calculated for each fraction. Paired t-test was used to check the significance of the change of specific metric at specific time. GEE model was used to test the association between changes of metrics over time for different pathology responses.

RESULTS

In general, CTN histogram in the pancreatic head (but not in spinal cord) changed during the CRT delivery. Changes from the 1st to the 26th fraction in MCTN ranged from -15.8 to 3.9 HU with an average of -4.7 HU (p<0.001). Meanwhile the volume decreased, the skewness increased (less skewed), and the kurtosis decreased (less peaked). The changes of MCTN, volume, skewness, and kurtosis became significant after two weeks of treatment. Patient pathological response is associated with the changes of MCTN, SD, and skewness. In cases of good response, patients tend to have large reductions in MCTN and skewness, and large increases in SD and kurtosis.

CONCLUSIONS

Significant changes in CT radiomic features, such as the MCTN, skewness, and kurtosis in tumor were observed during the course of CRT for pancreas cancer based on quantitative analysis of daily CTs. These changes may be potentially used for early assessment of treatment response and stratification for therapeutic intensification.

摘要

目的

为了早期评估治疗反应,我们研究了在胰腺癌放化疗(CRT)过程中肿瘤定量CT特征的辐射诱导变化。

方法

分析了20例胰头癌患者在常规CT引导下使用轨道CT进行CRT期间每日获取的诊断级CT数据。在每日的CT图像上,勾画出胰头、脊髓和主动脉,并提取这些轮廓内的CT值(CTN)直方图。为每个分次计算8个基于直方图的影像组学指标,包括平均CTN(MCTN)、峰值位置、体积、标准差(SD)、偏度、峰度、能量和熵。采用配对t检验来检验特定指标在特定时间变化的显著性。使用广义估计方程(GEE)模型来检验不同病理反应下指标随时间变化之间的关联。

结果

总体而言,在CRT过程中胰头(而非脊髓)的CTN直方图发生了变化。从第1分次到第26分次,MCTN的变化范围为-15.8至3.9 HU,平均为-4.7 HU(p<0.001)。同时,体积减小,偏度增加(偏斜度减小),峰度降低(峰值降低)。治疗两周后,MCTN、体积、偏度和峰度的变化变得显著。患者的病理反应与MCTN、SD和偏度的变化相关。在反应良好的病例中,患者的MCTN和偏度往往大幅降低,SD和峰度大幅增加。

结论

基于每日CT的定量分析,在胰腺癌CRT过程中观察到肿瘤的CT影像组学特征发生了显著变化,如MCTN、偏度和峰度。这些变化可能潜在地用于早期评估治疗反应和治疗强化分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4da1/5456365/d25d03d746f3/pone.0178961.g001.jpg

相似文献

2
Early Prediction of Acute Xerostomia During Radiation Therapy for Head and Neck Cancer Based on Texture Analysis of Daily CT.
Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):1308-1318. doi: 10.1016/j.ijrobp.2018.04.059. Epub 2018 May 1.
3
Time stability of delta-radiomics features and the impact on patient analysis in longitudinal CT images.
Med Phys. 2019 Apr;46(4):1663-1676. doi: 10.1002/mp.13395. Epub 2019 Feb 18.
4
Computed tomography number changes observed during computed tomography-guided radiation therapy for head and neck cancer.
Int J Radiat Oncol Biol Phys. 2015 Apr 1;91(5):1041-7. doi: 10.1016/j.ijrobp.2014.12.057.
6
Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics.
Eur Radiol. 2019 Nov;29(11):6080-6088. doi: 10.1007/s00330-019-06193-w. Epub 2019 Apr 26.
8
Characterization and management of interfractional anatomic changes for pancreatic cancer radiotherapy.
Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):e423-9. doi: 10.1016/j.ijrobp.2011.12.073. Epub 2012 Mar 19.
10

引用本文的文献

1
Advancements in Radiomics-Based AI for Pancreatic Ductal Adenocarcinoma.
Bioengineering (Basel). 2025 Aug 6;12(8):849. doi: 10.3390/bioengineering12080849.
2
Machine learning-based analysis of Ga-PSMA-11 PET/CT images for estimation of prostate tumor grade.
Phys Eng Sci Med. 2024 Jun;47(2):741-753. doi: 10.1007/s13246-024-01402-3. Epub 2024 Mar 25.
6
Comprehensive multimodal management of borderline resectable pancreatic cancer: Current status and progress.
World J Gastrointest Surg. 2023 Feb 27;15(2):142-162. doi: 10.4240/wjgs.v15.i2.142.
7
A radiomic model to classify response to neoadjuvant chemotherapy in breast cancer.
BMC Med Imaging. 2022 Dec 23;22(1):225. doi: 10.1186/s12880-022-00956-6.
8
Knowledge-Augmented Contrastive Learning for Abnormality Classification and Localization in Chest X-rays with Radiomics using a Feedback Loop.
IEEE Winter Conf Appl Comput Vis. 2022 Jan;2022:1789-1798. doi: 10.1109/wacv51458.2022.00185. Epub 2022 Feb 15.
9
Radiomics-Guided Global-Local Transformer for Weakly Supervised Pathology Localization in Chest X-Rays.
IEEE Trans Med Imaging. 2023 Mar;42(3):750-761. doi: 10.1109/TMI.2022.3217218. Epub 2023 Mar 2.
10
Application of artificial intelligence to pancreatic adenocarcinoma.
Front Oncol. 2022 Jul 22;12:960056. doi: 10.3389/fonc.2022.960056. eCollection 2022.

本文引用的文献

1
Radiomics: a new application from established techniques.
Expert Rev Precis Med Drug Dev. 2016;1(2):207-226. doi: 10.1080/23808993.2016.1164013. Epub 2016 Mar 31.
3
Adjuvant radiation therapy for pancreatic cancer: a review of the old and the new.
J Gastrointest Oncol. 2015 Aug;6(4):436-44. doi: 10.3978/j.issn.2078-6891.2015.014.
4
Computed tomography number changes observed during computed tomography-guided radiation therapy for head and neck cancer.
Int J Radiat Oncol Biol Phys. 2015 Apr 1;91(5):1041-7. doi: 10.1016/j.ijrobp.2014.12.057.
5
Pancreatic cancer: from state-of-the-art treatments to promising novel therapies.
Nat Rev Clin Oncol. 2015 Jun;12(6):319-34. doi: 10.1038/nrclinonc.2015.53. Epub 2015 Mar 31.
6
Quantification of radiation-induced lung damage with CT scans: the possible benefit for radiogenomics.
Acta Oncol. 2013 Oct;52(7):1405-10. doi: 10.3109/0284186X.2013.813074. Epub 2013 Aug 19.
7
Normal liver tissue density dose response in patients treated with stereotactic body radiation therapy for liver metastases.
Int J Radiat Oncol Biol Phys. 2012 Nov 1;84(3):e441-6. doi: 10.1016/j.ijrobp.2012.04.041. Epub 2012 Jun 9.
8
Regional normal lung tissue density changes in patients treated with stereotactic body radiation therapy for lung tumors.
Int J Radiat Oncol Biol Phys. 2012 Nov 15;84(4):1024-30. doi: 10.1016/j.ijrobp.2011.11.080. Epub 2012 May 12.
9
Quantifying heterogeneity in human tumours using MRI and PET.
Eur J Cancer. 2012 Mar;48(4):447-55. doi: 10.1016/j.ejca.2011.12.025. Epub 2012 Jan 20.
10
Radiomics: extracting more information from medical images using advanced feature analysis.
Eur J Cancer. 2012 Mar;48(4):441-6. doi: 10.1016/j.ejca.2011.11.036. Epub 2012 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验