Suppr超能文献

结核病非人灵长类动物模型的转化研究

Translational Research in the Nonhuman Primate Model of Tuberculosis.

作者信息

Foreman Taylor W, Mehra Smriti, Lackner Andrew A, Kaushal Deepak

机构信息

Tulane National Primate Research Center, Covington, Louisiana.

Tulane University School of Medicine, New Orleans, Louisiana.

出版信息

ILAR J. 2017 Dec 1;58(2):151-159. doi: 10.1093/ilar/ilx015.

Abstract

Infection with Mycobacterium tuberculosis predominantly establishes subclinical latent infection over the lifetime of an individual, with a fraction of infected individuals rapidly progressing to active disease. The immune control in latent infection can be perturbed by comorbidities such as diabetes mellitus, obesity, smoking, and coinfection with helminthes or HIV. Modeling the varying aspects of natural infection remains incomplete when using zebrafish and mice. However, the nonhuman primate model of tuberculosis offers a unique and accurate model to investigate host responses to infection, test novel therapeutics, and thoroughly assess preclinical vaccine candidates. Rhesus macaques and cynomolgus macaques manifest the full gamut of clinical and pathological findings in human Mycobacterium tuberculosis infection, including the ability to co-infect macaques with Simian Immunodeficiency Virus to model HIV co-infection. Here we discuss advanced techniques to assay various clinical outcomes of the natural progression of infection as well as therapeutics in development and novel preclinical vaccines. Finally, we survey the translational aspects of nonhuman primate research and argue the urgent need to thoroughly examine preclinical therapeutics and vaccines using this model prior to clinical implementation.

摘要

结核分枝杆菌感染在个体一生中主要导致亚临床潜伏感染,一部分受感染个体迅速发展为活动性疾病。潜伏感染中的免疫控制可能会受到合并症的干扰,如糖尿病、肥胖、吸烟以及与蠕虫或艾滋病毒的合并感染。使用斑马鱼和小鼠对自然感染的不同方面进行建模仍不完整。然而,结核的非人灵长类动物模型为研究宿主对感染的反应、测试新型疗法以及全面评估临床前候选疫苗提供了独特而准确的模型。恒河猴和食蟹猴表现出人类结核分枝杆菌感染的全部临床和病理表现,包括将猕猴与猿猴免疫缺陷病毒共同感染以模拟艾滋病毒合并感染的能力。在此,我们讨论了用于检测感染自然进展的各种临床结果以及正在研发的疗法和新型临床前疫苗的先进技术。最后,我们审视了非人灵长类动物研究的转化方面,并认为在临床实施之前迫切需要使用该模型对临床前疗法和疫苗进行全面检查。

相似文献

1
Translational Research in the Nonhuman Primate Model of Tuberculosis.
ILAR J. 2017 Dec 1;58(2):151-159. doi: 10.1093/ilar/ilx015.
2
CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):E5636-44. doi: 10.1073/pnas.1611987113. Epub 2016 Sep 6.
4
Clinical latency and reactivation of AIDS-related mycobacterial infections.
J Virol. 2004 Dec;78(24):14023-32. doi: 10.1128/JVI.78.24.14023-14032.2004.
5
Non-Human Primate Models of Tuberculosis.
Microbiol Spectr. 2016 Aug;4(4). doi: 10.1128/microbiolspec.TBTB2-0007-2016.
6
The TB-specific CD4(+) T cell immune repertoire in both cynomolgus and rhesus macaques largely overlap with humans.
Tuberculosis (Edinb). 2015 Dec;95(6):722-735. doi: 10.1016/j.tube.2015.07.005. Epub 2015 Aug 28.
8
[Recent progress in mycobacteriology].
Kekkaku. 2007 Oct;82(10):783-99.

引用本文的文献

1
The Impact of Animal Models and Strain Standardization on the Evaluation of Tuberculosis Vaccine Efficacy.
Vaccines (Basel). 2025 Jun 21;13(7):669. doi: 10.3390/vaccines13070669.
2
Distinct clinical outcomes in pediatric tuberculosis: A study utilizing infant macaques exposed to aerosol .
iScience. 2025 Jun 13;28(7):112899. doi: 10.1016/j.isci.2025.112899. eCollection 2025 Jul 18.
3
4
Applied anatomy and morphology of Meibomian glands in the non-human primate.
Sci Rep. 2025 Jul 1;15(1):20749. doi: 10.1038/s41598-025-05452-9.
5
Challenges in developing new tuberculosis vaccines.
Mem Inst Oswaldo Cruz. 2025 Jun 9;120:e240236. doi: 10.1590/0074-02760240236. eCollection 2025.
6
Trends in Viral Vector-Based Vaccines for Tuberculosis: A Patent Review (2010-2023).
Vaccines (Basel). 2024 Aug 2;12(8):876. doi: 10.3390/vaccines12080876.
7
Single-Cell Transcriptomics of /HIV Co-Infection.
Cells. 2023 Sep 17;12(18):2295. doi: 10.3390/cells12182295.
8
Animal models for COVID-19 and tuberculosis.
Front Immunol. 2023 Aug 11;14:1223260. doi: 10.3389/fimmu.2023.1223260. eCollection 2023.
9
Mycobacterial Genetic Technologies for Probing the Host-Pathogen Microenvironment.
Infect Immun. 2023 Jun 15;91(6):e0043022. doi: 10.1128/iai.00430-22. Epub 2023 May 30.

本文引用的文献

1
The Promise of Molecular Imaging in the Study and Treatment of Infectious Diseases.
Mol Imaging Biol. 2017 Jun;19(3):341-347. doi: 10.1007/s11307-017-1055-0.
2
Hypoxia Sensing and Persistence Genes Are Expressed during the Intragranulomatous Survival of Mycobacterium tuberculosis.
Am J Respir Cell Mol Biol. 2017 May;56(5):637-647. doi: 10.1165/rcmb.2016-0239OC.
5
Non-Human Primate Models of Tuberculosis.
Microbiol Spectr. 2016 Aug;4(4). doi: 10.1128/microbiolspec.TBTB2-0007-2016.
6
Combining biomedical preventions for HIV: Vaccines with pre-exposure prophylaxis, microbicides or other HIV preventions.
Hum Vaccin Immunother. 2016 Dec;12(12):3202-3211. doi: 10.1080/21645515.2016.1231258.
7
CD4+ T-cell-independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):E5636-44. doi: 10.1073/pnas.1611987113. Epub 2016 Sep 6.
8
Adaptation of Mycobacterium tuberculosis to Impaired Host Immunity in HIV-Infected Patients.
J Infect Dis. 2016 Oct 15;214(8):1205-11. doi: 10.1093/infdis/jiw364. Epub 2016 Aug 17.
9
Testing the H56 Vaccine Delivered in 4 Different Adjuvants as a BCG-Booster in a Non-Human Primate Model of Tuberculosis.
PLoS One. 2016 Aug 15;11(8):e0161217. doi: 10.1371/journal.pone.0161217. eCollection 2016.
10
Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration.
Cell. 2016 Mar 24;165(1):139-152. doi: 10.1016/j.cell.2016.02.034.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验