Lee Hui Sun, Im Wonpil
Department of Biological Sciences and Bioengineering Program, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA.
Glycobiology. 2017 Aug 1;27(8):734-742. doi: 10.1093/glycob/cwx052.
N-linked glycosylation is an enzymatic reaction in which an oligosaccharide is transferred en bloc onto an asparagine residue of an acceptor polypeptide, catalyzed by oligosaccharyltransferase (OST). Despite the available crystal structures, the role of the external loop EL5, which is critical for the catalytic cycle, is enigmatic as EL5 in the crystal structures is partially absent or blocks a pathway of lipid-linked oligosaccharide to the active site. Here we report the molecular origin of EL5 conformational changes through a series of molecular dynamics simulations of a bacterial OST, Campylobacter lari PglB. The simulations reveal that the isoprenoid moiety of lipid-linked oligosaccharide favorably binds to a hydrophobic groove of the PglB transmembrane domain. This binding triggers the conformational changes of the transmembrane domain and subsequently impairs the structural stability of EL5, leading to disordered EL5 with open conformations that are required for correct placement of the oligosaccharide in the active site.
N-连接糖基化是一种酶促反应,在该反应中,寡糖由寡糖基转移酶(OST)催化,整体转移到受体多肽的天冬酰胺残基上。尽管已有晶体结构,但对催化循环至关重要的外环EL5的作用仍不明确,因为晶体结构中的EL5部分缺失或阻断了脂质连接寡糖通向活性位点的途径。在此,我们通过对细菌OST——空肠弯曲菌PglB进行一系列分子动力学模拟,报告了EL5构象变化的分子起源。模拟结果表明,脂质连接寡糖的类异戊二烯部分与PglB跨膜结构域的疏水凹槽形成有利结合。这种结合触发了跨膜结构域的构象变化,随后削弱了EL5的结构稳定性,导致EL5无序并具有开放构象,而这种构象是寡糖在活性位点正确定位所必需的。