Suppr超能文献

用于癫痫斑马鱼模型中癫痫发作检测的脑活动自动分析

Automated analysis of brain activity for seizure detection in zebrafish models of epilepsy.

作者信息

Hunyadi Borbála, Siekierska Aleksandra, Sourbron Jo, Copmans Daniëlle, de Witte Peter A M

机构信息

STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, 3001 Leuven, Belgium; imec, Leuven, Belgium.

Laboratory for Molecular Biodiscovery, KU Leuven, Campus Gasthuisberg, Herestraat 49, O&N II, 3000 Leuven, Belgium.

出版信息

J Neurosci Methods. 2017 Aug 1;287:13-24. doi: 10.1016/j.jneumeth.2017.05.024. Epub 2017 Jun 1.

Abstract

BACKGROUND

Epilepsy is a chronic neurological condition, with over 30% of cases unresponsive to treatment. Zebrafish larvae show great potential to serve as an animal model of epilepsy in drug discovery. Thanks to their high fecundity and relatively low cost, they are amenable to high-throughput screening. However, the assessment of seizure occurrences in zebrafish larvae remains a bottleneck, as visual analysis is subjective and time-consuming.

NEW METHOD

For the first time, we present an automated algorithm to detect epileptic discharges in single-channel local field potential (LFP) recordings in zebrafish. First, candidate seizure segments are selected based on their energy and length. Afterwards, discriminative features are extracted from each segment. Using a labeled dataset, a support vector machine (SVM) classifier is trained to learn an optimal feature mapping. Finally, this SVM classifier is used to detect seizure segments in new signals.

RESULTS

We tested the proposed algorithm both in a chemically-induced seizure model and a genetic epilepsy model. In both cases, the algorithm delivered similar results to visual analysis and found a significant difference in number of seizures between the epileptic and control group.

COMPARISON WITH EXISTING METHODS

Direct comparison with multichannel techniques or methods developed for different animal models is not feasible. Nevertheless, a literature review shows that our algorithm outperforms state-of-the-art techniques in terms of accuracy, precision and specificity, while maintaining a reasonable sensitivity.

CONCLUSION

Our seizure detection system is a generic, time-saving and objective method to analyze zebrafish LPF, which can replace visual analysis and facilitate true high-throughput studies.

摘要

背景

癫痫是一种慢性神经疾病,超过30%的病例对治疗无反应。斑马鱼幼虫在药物研发中作为癫痫动物模型具有巨大潜力。由于其高繁殖力和相对低成本,它们适用于高通量筛选。然而,斑马鱼幼虫癫痫发作的评估仍然是一个瓶颈,因为视觉分析主观且耗时。

新方法

我们首次提出一种自动算法,用于检测斑马鱼单通道局部场电位(LFP)记录中的癫痫放电。首先,根据能量和长度选择候选癫痫发作片段。之后,从每个片段中提取判别特征。使用标记数据集训练支持向量机(SVM)分类器以学习最优特征映射。最后,使用该SVM分类器检测新信号中的癫痫发作片段。

结果

我们在化学诱导癫痫模型和基因癫痫模型中测试了所提出的算法。在这两种情况下,该算法的结果与视觉分析相似,并且发现癫痫组和对照组之间的癫痫发作次数存在显著差异。

与现有方法的比较

与多通道技术或为不同动物模型开发的方法进行直接比较不可行。然而,文献综述表明,我们的算法在准确性、精确性和特异性方面优于现有技术,同时保持合理的敏感性。

结论

我们的癫痫发作检测系统是一种通用、省时且客观的分析斑马鱼LPF的方法,它可以取代视觉分析并促进真正的高通量研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验