Suppr超能文献

基于 EEG 信号时频图像的高斯混合模型和灰度共生矩阵特征的癫痫发作检测。

Epileptic Seizure Detection Based on Time-Frequency Images of EEG Signals Using Gaussian Mixture Model and Gray Level Co-Occurrence Matrix Features.

机构信息

1 School of Automation Science and Electrical Engineering, Beijing Advanced Innovation Center for Big Data and Brain Computing, Beijing Advanced Innovation Center for Big Date-based Precision Medicine, Beihang University, Beijing, P. R. China.

2 School of Automation Science and Electrical Engineering, Beihang University, Beijing, P. R. China.

出版信息

Int J Neural Syst. 2018 Sep;28(7):1850003. doi: 10.1142/S012906571850003X. Epub 2018 Jan 25.

Abstract

The electroencephalogram (EEG) signal analysis is a valuable tool in the evaluation of neurological disorders, which is commonly used for the diagnosis of epileptic seizures. This paper presents a novel automatic EEG signal classification method for epileptic seizure detection. The proposed method first employs a continuous wavelet transform (CWT) method for obtaining the time-frequency images (TFI) of EEG signals. The processed EEG signals are then decomposed into five sub-band frequency components of clinical interest since these sub-band frequency components indicate much better discriminative characteristics. Both Gaussian Mixture Model (GMM) features and Gray Level Co-occurrence Matrix (GLCM) descriptors are then extracted from these sub-band TFI. Additionally, in order to improve classification accuracy, a compact feature selection method by combining the ReliefF and the support vector machine-based recursive feature elimination (RFE-SVM) algorithm is adopted to select the most discriminative feature subset, which is an input to the SVM with the radial basis function (RBF) for classifying epileptic seizure EEG signals. The experimental results from a publicly available benchmark database demonstrate that the proposed approach provides better classification accuracy than the recently proposed methods in the literature, indicating the effectiveness of the proposed method in the detection of epileptic seizures.

摘要

脑电图(EEG)信号分析是评估神经障碍的一种有价值的工具,常用于癫痫发作的诊断。本文提出了一种用于癫痫发作检测的新型自动脑电图信号分类方法。该方法首先采用连续小波变换(CWT)方法获取脑电图信号的时频图像(TFI)。然后,将处理后的脑电图信号分解为五个感兴趣的子带频率分量,因为这些子带频率分量具有更好的区分特征。然后从这些子带 TFI 中提取高斯混合模型(GMM)特征和灰度共生矩阵(GLCM)描述符。此外,为了提高分类准确性,采用了一种结合 ReliefF 和基于支持向量机的递归特征消除(RFE-SVM)算法的紧凑特征选择方法,选择最具判别力的特征子集,作为具有径向基函数(RBF)的 SVM 的输入,用于分类癫痫发作的脑电图信号。来自公共基准数据库的实验结果表明,与文献中最近提出的方法相比,所提出的方法提供了更好的分类准确性,表明了该方法在癫痫发作检测中的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验