Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest, Hungary.
Neurochem Int. 2018 Jul;117:5-14. doi: 10.1016/j.neuint.2017.05.018. Epub 2017 Jun 2.
This review summarizes our present view on the molecular pathogenesis of human (h) E3-deficiency caused by a variety of genetic alterations with a special emphasis on the moonlighting biochemical phenomena related to the affected (dihydro)lipoamide dehydrogenase (LADH, E3, gene: dld), in particular the generation of reactive oxygen species (ROS). E3-deficiency is a rare autosomal recessive genetic disorder frequently presenting with a neonatal onset and premature death; the highest carrier rate of a single pathogenic dld mutation (1:94-1:110) was found among Ashkenazi Jews. Patients usually die during acute episodes that generally involve severe metabolic decompensation and lactic acidosis leading to neurological, cardiological, and/or hepatological manifestations. The disease owes its severity to the fact that LADH is the common E3 subunit of the alpha-ketoglutarate (KGDHc), pyruvate (PDHc), and branched-chain α-keto acid dehydrogenase complexes and is also part of the glycine cleavage system, hence the malfunctioning of LADH simultaneously incapacitates several central metabolic pathways. Nevertheless, the clinical pictures are usually not unequivocally portrayed through the loss of LADH activities and imply auxiliary mechanisms that exacerbate the symptoms and outcomes of this disorder. Enhanced ROS generation by disease-causing hE3 variants as well as by the E1-E2 subcomplex of the hKGDHc likely contributes to selected pathogeneses of E3-deficiency, which could be targeted by specific drugs or antioxidants; lipoic acid was demonstrated to be a potent inhibitor of ROS generation by hE3 in vitro. Flavin supplementation might prove to be beneficial for those mutations triggering FAD loss in the hE3 component. Selected pathogenic hE3 variants lose their affinity for the E2 component of the hPDHc, a mechanism which warrants scrutiny also for other E3-haboring complexes.
这篇综述总结了我们目前对人类(h)E3 缺乏症的分子发病机制的认识,重点介绍了与受影响的(二氢)硫辛酰胺脱氢酶(LADH,E3,基因:dld)相关的兼职生化现象,特别是与活性氧(ROS)的产生有关的现象。E3 缺乏症是一种罕见的常染色体隐性遗传疾病,常表现为新生儿发病和早逝;在阿什肯纳兹犹太人中,单一致病性 dld 突变的最高携带者率(1:94-1:110)。患者通常在急性发作期间死亡,这些发作通常涉及严重的代谢失代偿和乳酸性酸中毒,导致神经、心脏和/或肝脏表现。这种疾病的严重性在于 LADH 是 α-酮戊二酸(KGDHc)、丙酮酸(PDHc)和支链α-酮酸脱氢酶复合物的常见 E3 亚基,也是甘氨酸裂解系统的一部分,因此 LADH 的功能障碍同时使几种中心代谢途径失能。然而,临床表现通常并不明确地通过 LADH 活性的丧失来描绘,并暗示了加剧这种疾病症状和结果的辅助机制。致病 hE3 变体以及 hKGDHc 的 E1-E2 亚复合物产生的增强 ROS 生成可能有助于 E3 缺乏症的选择发病机制,可以通过特定的药物或抗氧化剂来靶向;体外实验证明,硫辛酸是抑制 hE3 产生 ROS 的有效抑制剂。黄素补充可能对那些导致 hE3 成分中 FAD 丧失的突变有益。选定的致病性 hE3 变体失去了与 hPDHc 的 E2 成分的亲和力,这种机制也值得对其他含有 E3 的复合物进行研究。