Suppr超能文献

治疗师:致力于开发一款用于儿童运动和神经康复治疗的自主社交互动机器人。

THERAPIST: Towards an Autonomous Socially Interactive Robot for Motor and Neurorehabilitation Therapies for Children.

作者信息

Calderita Luis Vicente, Manso Luis J, Bustos Pablo, Suárez-Mejías Cristina, Fernández Fernando, Bandera Antonio

机构信息

RoboLab, University of Extremadura, Cáceres, Spain.

Technological Innovation Group, Virgen del Rocío University Hospital, Seville, Spain.

出版信息

JMIR Rehabil Assist Technol. 2014 Oct 7;1(1):e1. doi: 10.2196/rehab.3151.

Abstract

BACKGROUND

Neurorehabilitation therapies exploiting the use-dependent plasticity of our neuromuscular system are devised to help patients who suffer from injuries or diseases of this system. These therapies take advantage of the fact that the motor activity alters the properties of our neurons and muscles, including the pattern of their connectivity, and thus their functionality. Hence, a sensor-motor treatment where patients makes certain movements will help them (re)learn how to move the affected body parts. But these traditional rehabilitation processes are usually repetitive and lengthy, reducing motivation and adherence to the treatment, and thus limiting the benefits for the patients.

OBJECTIVE

Our goal was to create innovative neurorehabilitation therapies based on THERAPIST, a socially assistive robot. THERAPIST is an autonomous robot that is able to find and execute plans and adapt them to new situations in real-time. The software architecture of THERAPIST monitors and determines the course of action, learns from previous experiences, and interacts with people using verbal and non-verbal channels. THERAPIST can increase the adherence of the patient to the sessions using serious games. Data are recorded and can be used to tailor patient sessions.

METHODS

We hypothesized that pediatric patients would engage better in a therapeutic non-physical interaction with a robot, facilitating the design of new therapies to improve patient motivation. We propose RoboCog, a novel cognitive architecture. This architecture will enhance the effectiveness and time-of-response of complex multi-degree-of-freedom robots designed to collaborate with humans, combining two core elements: a deep and hybrid representation of the current state, own, and observed; and a set of task-dependent planners, working at different levels of abstraction but connected to this central representation through a common interface. Using RoboCog, THERAPIST engages the human partner in an active interactive process. But RoboCog also endows the robot with abilities for high-level planning, monitoring, and learning. Thus, THERAPIST engages the patient through different games or activities, and adapts the session to each individual.

RESULTS

RoboCog successfully integrates a deliberative planner with a set of modules working at situational or sensorimotor levels. This architecture also allows THERAPIST to deliver responses at a human rate. The synchronization of the multiple interaction modalities results from a unique scene representation or model. THERAPIST is now a socially interactive robot that, instead of reproducing the phrases or gestures that the developers decide, maintains a dialogue and autonomously generate gestures or expressions. THERAPIST is able to play simple games with human partners, which requires humans to perform certain movements, and also to capture the human motion, for later analysis by clinic specialists.

CONCLUSIONS

The initial hypothesis was validated by our experimental studies showing that interaction with the robot results in highly attentive and collaborative attitudes in pediatric patients. We also verified that RoboCog allows the robot to interact with patients at human rates. However, there remain many issues to overcome. The development of novel hands-off rehabilitation therapies will require the intersection of multiple challenging directions of research that we are currently exploring.

摘要

背景

利用我们神经肌肉系统的使用依赖性可塑性的神经康复疗法旨在帮助患有该系统损伤或疾病的患者。这些疗法利用了运动活动会改变我们神经元和肌肉的特性这一事实,包括它们的连接模式,进而改变其功能。因此,一种让患者进行特定动作的感觉运动疗法将帮助他们(重新)学习如何移动受影响的身体部位。但这些传统的康复过程通常是重复且冗长的,会降低患者的积极性和对治疗的依从性,从而限制了对患者的益处。

目的

我们的目标是基于社交辅助机器人THERAPIST创建创新的神经康复疗法。THERAPIST是一个自主机器人,能够找到并执行计划,并实时将其适应新情况。THERAPIST的软件架构会监测并确定行动过程,从以往经验中学习,并通过语言和非语言渠道与人互动。THERAPIST可以利用严肃游戏提高患者对治疗课程的依从性。数据会被记录下来,并可用于定制患者的治疗课程。

方法

我们假设儿科患者会更好地参与与机器人的非物理性治疗互动,这有助于设计新的疗法来提高患者的积极性。我们提出了RoboCog,一种新颖的认知架构。这种架构将增强旨在与人类协作的复杂多自由度机器人的有效性和响应及时性,它结合了两个核心要素:对当前自身状态和观察到的状态进行深度混合表示;以及一组依赖任务的规划器,它们在不同的抽象层次上工作,但通过一个公共接口与这个核心表示相连接。利用RoboCog,THERAPIST使人类伙伴参与到一个积极的互动过程中。但RoboCog也赋予了机器人进行高级规划、监测和学习的能力。因此,THERAPIST通过不同的游戏或活动让患者参与进来,并根据每个患者的情况调整治疗课程。

结果

RoboCog成功地将一个审议规划器与一组在情境或感觉运动层面工作的模块集成在一起。这种架构还使THERAPIST能够以人类的速度做出反应。多种交互方式的同步源于一个独特的场景表示或模型。THERAPIST现在是一个社交互动机器人,它不再重复开发者决定的短语或手势,而是保持对话并自主生成手势或表情。THERAPIST能够与人类伙伴玩简单的游戏,这要求人类执行某些动作,并且还能捕捉人类动作,以供临床专家后续分析。

结论

我们的实验研究验证了最初的假设,即与机器人的互动会使儿科患者表现出高度专注和协作的态度。我们还证实了RoboCog使机器人能够以人类的速度与患者互动。然而,仍有许多问题需要克服。新型非接触式康复疗法的开发将需要我们目前正在探索的多个具有挑战性的研究方向的交叉融合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9182/5454569/d8f917610c9e/rehab_v1i1e1_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验