Suppr超能文献

基于模型的 Kinect 深度数据增强在人体运动捕捉应用中的研究。

Model-based reinforcement of Kinect depth data for human motion capture applications.

机构信息

Polythecnic School of Cáceres, University of Extremadura, Cáceres 10003, Spain.

出版信息

Sensors (Basel). 2013 Jul 10;13(7):8835-55. doi: 10.3390/s130708835.

Abstract

Motion capture systems have recently experienced a strong evolution. New cheap depth sensors and open source frameworks, such as OpenNI, allow for perceiving human motion on-line without using invasive systems. However, these proposals do not evaluate the validity of the obtained poses. This paper addresses this issue using a model-based pose generator to complement the OpenNI human tracker. The proposed system enforces kinematics constraints, eliminates odd poses and filters sensor noise, while learning the real dimensions of the performer's body. The system is composed by a PrimeSense sensor, an OpenNI tracker and a kinematics-based filter and has been extensively tested. Experiments show that the proposed system improves pure OpenNI results at a very low computational cost.

摘要

运动捕捉系统最近经历了快速发展。新的廉价深度传感器和开源框架(如 OpenNI)允许在不使用侵入式系统的情况下在线感知人体运动。然而,这些方案并没有评估所获得姿势的有效性。本文通过使用基于模型的姿势生成器来补充 OpenNI 人体跟踪器来解决这个问题。所提出的系统强制执行运动学约束,消除奇异姿势并过滤传感器噪声,同时学习表演者身体的真实尺寸。该系统由 PrimeSense 传感器、OpenNI 跟踪器和基于运动学的滤波器组成,并进行了广泛的测试。实验表明,所提出的系统以非常低的计算成本提高了纯 OpenNI 的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24c5/3758625/03fc473f6ac3/sensors-13-08835f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验