Suppr超能文献

社区实践中乳腺磁共振成像筛查的性能基准

Performance Benchmarks for Screening Breast MR Imaging in Community Practice.

作者信息

Lee Janie M, Ichikawa Laura, Valencia Elizabeth, Miglioretti Diana L, Wernli Karen, Buist Diana S M, Kerlikowske Karla, Henderson Louise M, Sprague Brian L, Onega Tracy, Rauscher Garth H, Lehman Constance D

机构信息

From the Department of Radiology, University of Washington, Seattle, Wash (J.M.L., E.V.); Kaiser Permanente Washington Health Research Institute, Seattle, Wash (L.I., D.L.M., K.W., D.S.M.B.); Department of Public Health Sciences, School of Medicine, University of California, Davis School of Medicine, Davis, Calif (D.L.M.); Department of Medicine, Epidemiology and Biostatistics, University of California, San Francisco, Calif (K.K.); Department of Radiology, University of North Carolina School of Medicine, Chapel Hill, NC (L.M.H.); Department of Surgery, University of Vermont, Burlington, Vt (B.L.S.); Norris Cotton Cancer Center and Geisel School of Medicine at Dartmouth, Lebanon, NH (T.O.); Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, Ill (G.H.R.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (C.D.L.).

出版信息

Radiology. 2017 Oct;285(1):44-52. doi: 10.1148/radiol.2017162033. Epub 2017 Jun 5.

Abstract

Purpose To compare screening magnetic resonance (MR) imaging performance in the Breast Cancer Surveillance Consortium (BCSC) with Breast Imaging Reporting and Data System (BI-RADS) benchmarks. Materials and Methods This study was approved by the institutional review board and compliant with HIPAA and included BCSC screening MR examinations collected between 2005 and 2013 from 5343 women (8387 MR examinations) linked to regional Surveillance, Epidemiology, and End Results program registries, state tumor registries, and pathologic information databases that identified breast cancer cases and tumor characteristics. Clinical, demographic, and imaging characteristics were assessed. Performance measures were calculated according to BI-RADS fifth edition and included cancer detection rate (CDR), positive predictive value of biopsy recommendation (PPV), sensitivity, and specificity. Results The median patient age was 52 years; 52% of MR examinations were performed in women with a first-degree family history of breast cancer, 46% in women with a personal history of breast cancer, and 15% in women with both risk factors. Screening MR imaging depicted 146 cancers, and 35 interval cancers were identified (181 total-54 in situ, 125 invasive, and two status unknown). The CDR was 17 per 1000 screening examinations (95% confidence interval [CI]: 15, 20 per 1000 screening examinations; BI-RADS benchmark, 20-30 per 1000 screening examinations). PPV was 19% (95% CI: 16%, 22%; benchmark, 15%). Sensitivity was 81% (95% CI: 75%, 86%; benchmark, >80%), and specificity was 83% (95% CI: 82%, 84%; benchmark, 85%-90%). The median tumor size of invasive cancers was 10 mm; 88% were node negative. Conclusion The interpretative performance of screening MR imaging in the BCSC meets most BI-RADS benchmarks and approaches benchmark levels for remaining measures. Clinical practice performance data can inform ongoing benchmark development and help identify areas for quality improvement. RSNA, 2017.

摘要

目的 比较乳腺癌监测联盟(BCSC)中乳腺筛查磁共振成像(MR)的性能与乳腺影像报告和数据系统(BI-RADS)的基准。材料与方法 本研究经机构审查委员会批准,符合健康保险流通与责任法案(HIPAA)要求,纳入了2005年至2013年间收集的5343名女性(8387次MR检查)的BCSC筛查MR检查,这些检查与区域监测、流行病学和最终结果计划登记处、州肿瘤登记处以及确定乳腺癌病例和肿瘤特征的病理信息数据库相关联。对临床、人口统计学和影像特征进行了评估。根据BI-RADS第五版计算性能指标,包括癌症检出率(CDR)、活检推荐的阳性预测值(PPV)、敏感性和特异性。结果 患者中位年龄为52岁;52%的MR检查在有乳腺癌一级家族史的女性中进行,46%在有乳腺癌个人史的女性中进行,15%在有两种危险因素的女性中进行。筛查MR成像显示了146例癌症,发现了35例间期癌(共181例——54例原位癌、125例浸润癌和2例状态不明)。CDR为每1000次筛查检查17例(95%置信区间[CI]:每1000次筛查检查15例、20例;BI-RADS基准为每1000次筛查检查20 - 30例)。PPV为19%(95% CI:16%,22%;基准为15%)。敏感性为81%(95% CI:75%,86%;基准为>80%),特异性为83%(95% CI:82%,84%;基准为85% - 90%)。浸润癌的中位肿瘤大小为10 mm;88%为无淋巴结转移。结论 BCSC中乳腺筛查MR成像的解读性能符合大多数BI-RADS基准,并接近其余指标的基准水平。临床实践性能数据可为正在进行的基准制定提供信息,并有助于确定质量改进的领域。RSNA,2017年。

相似文献

8

引用本文的文献

3
Clinical Application of Artificial Intelligence in Breast MRI.人工智能在乳腺磁共振成像中的临床应用。
J Korean Soc Radiol. 2025 Mar;86(2):227-235. doi: 10.3348/jksr.2025.0012. Epub 2025 Mar 26.
6
MR spectroscopy in breast cancer metabolomics.乳腺癌代谢组学中的磁共振波谱分析
Anal Sci Adv. 2021 May 3;2(11-12):564-578. doi: 10.1002/ansa.202000160. eCollection 2021 Dec.
7
AI Applications to Breast MRI: Today and Tomorrow.人工智能在乳腺 MRI 中的应用:今天和明天。
J Magn Reson Imaging. 2024 Dec;60(6):2290-2308. doi: 10.1002/jmri.29358. Epub 2024 Apr 5.
8
Clinical and Imaging Features of MRI Screen-Detected Breast Cancer.MRI 筛查检出乳腺癌的临床和影像学特征。
Clin Breast Cancer. 2024 Jan;24(1):45-52. doi: 10.1016/j.clbc.2023.09.012. Epub 2023 Sep 22.

本文引用的文献

3
Screening MRI in Women With a Personal History of Breast Cancer.对有乳腺癌个人病史的女性进行 MRI 筛查。
J Natl Cancer Inst. 2016 Jan 7;108(3). doi: 10.1093/jnci/djv349. Print 2016 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验