Suppr超能文献

改进的差分恶魔算法。

The improved differential demon algorithm.

作者信息

Yang Jinzhu, Deng Meili, Cao Peng, Tan Wenjun, Sun Qi, Lu Lin, Zhao Dazhe

出版信息

Technol Health Care. 2017 Jul 20;25(S1):251-257. doi: 10.3233/THC-171328.

Abstract

BACKGROUND

Differential demon is a fast and efficient registration algorithm. It drives the floating image to deform using the force based on the gradient between the reference and floating image. But it will cause abnormal deformation when the driving force approaches zero,which limits its practical applications.

OBJECTIVE

This paper proposed an improved differential demon algorithm, which aimed to enhance the registration performance of the existing demon algorithm.

METHODS

Firstly, we review the original differential demon algorithm. Then, we propose an improved differential demon algorithm and the process of mathematical deduction. Finally, we use experiment to prove that the improved differential demon algorithm is effective and it can improve the accuracy of registration.

RESULTS

We tested our method on data sets provided by Xuanwu Hospital Capital Medical University. The registration performance proved to be better than the original demon algorithm in terms of mutual information, normalized correlation coefficient, mean square error and iteration number.

CONCLUSIONS

Experiment results demonstrate the superiority of method proposed in this paper to the original demon algorithm.

摘要

背景

差分恶魔算法是一种快速高效的配准算法。它利用参考图像和浮动图像之间的梯度力驱动浮动图像变形。但当驱动力接近零时会导致异常变形,这限制了其实际应用。

目的

提出一种改进的差分恶魔算法,旨在提高现有恶魔算法的配准性能。

方法

首先回顾原始差分恶魔算法。然后提出改进的差分恶魔算法及数学推导过程。最后通过实验证明改进的差分恶魔算法有效且能提高配准精度。

结果

在首都医科大学宣武医院提供的数据集上测试了该方法。在互信息、归一化相关系数、均方误差和迭代次数方面,配准性能优于原始恶魔算法。

结论

实验结果证明了本文提出的方法优于原始恶魔算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验