Suppr超能文献

基于欧洲桃后代重复记录的果实重量和品质的基因组预测

Genome-enabled predictions for fruit weight and quality from repeated records in European peach progenies.

作者信息

Biscarini Filippo, Nazzicari Nelson, Bink Marco, Arús Pere, Aranzana Maria José, Verde Ignazio, Micali Sabrina, Pascal Thierry, Quilot-Turion Benedicte, Lambert Patrick, da Silva Linge Cassia, Pacheco Igor, Bassi Daniele, Stella Alessandra, Rossini Laura

机构信息

PTP Science Park, Via Einstein - Loc. Cascina Codazza, Lodi, Italy.

IBBA-CNR, Via Edoardo Bassini, 15, Milan, 20133, Italy.

出版信息

BMC Genomics. 2017 Jun 6;18(1):432. doi: 10.1186/s12864-017-3781-8.

Abstract

BACKGROUND

Highly polygenic traits such as fruit weight, sugar content and acidity strongly influence the agroeconomic value of peach varieties. Genomic Selection (GS) can accelerate peach yield and quality gain if predictions show higher levels of accuracy compared to phenotypic selection. The available IPSC 9K SNP array V1 allows standardized and highly reliable genotyping, preparing the ground for GS in peach.

RESULTS

A repeatability model (multiple records per individual plant) for genome-enabled predictions in eleven European peach populations is presented. The analysis included 1147 individuals derived from both commercial and non-commercial peach or peach-related accessions. Considered traits were average fruit weight (FW), sugar content (SC) and titratable acidity (TA). Plants were genotyped with the 9K IPSC array, grown in three countries (France, Italy, Spain) and phenotyped for 3-5 years. An analysis of imputation accuracy of missing genotypic data was conducted using the software Beagle, showing that two of the eleven populations were highly sensitive to increasing levels of missing data. The regression model produced, for each trait and each population, estimates of heritability (FW:0.35, SC:0.48, TA:0.53, on average) and repeatability (FW:0.56, SC:0.63, TA:0.62, on average). Predictive ability was estimated in a five-fold cross validation scheme within population as the correlation of true and predicted phenotypes. Results differed by populations and traits, but predictive abilities were in general high (FW:0.60, SC:0.72, TA:0.65, on average).

CONCLUSIONS

This study assessed the feasibility of Genomic Selection in peach for highly polygenic traits linked to yield and fruit quality. The accuracy of imputing missing genotypes was as high as 96%, and the genomic predictive ability was on average 0.65, but could be as high as 0.84 for fruit weight or 0.83 for titratable acidity. The estimated repeatability may prove very useful in the management of the typical long cycles involved in peach productions. All together, these results are very promising for the application of genomic selection to peach breeding programmes.

摘要

背景

果实重量、含糖量和酸度等高聚基因性状对桃品种的农业经济价值有重大影响。如果预测显示基因组选择(GS)相比表型选择具有更高的准确性,那么它可以加速桃产量和品质的提升。现有的IPSC 9K SNP阵列V1可实现标准化且高度可靠的基因分型,为桃的基因组选择奠定了基础。

结果

提出了一个用于11个欧洲桃种群基于基因组预测的重复性模型(每个单株有多个记录)。该分析包括来自商业和非商业桃或桃相关种质的1147个个体。所考虑的性状为平均果实重量(FW)、含糖量(SC)和可滴定酸度(TA)。植株使用9K IPSC阵列进行基因分型,在三个国家(法国、意大利、西班牙)种植,并进行3至5年的表型分析。使用Beagle软件对缺失基因型数据的填充准确性进行了分析,结果表明11个种群中有两个对缺失数据水平的增加高度敏感。针对每个性状和每个种群,回归模型得出了遗传力估计值(平均而言,FW为0.35,SC为0.48,TA为0.53)和重复性估计值(平均而言,FW为0.56,SC为0.63,TA为0.62)。在种群内的五重交叉验证方案中,以真实表型与预测表型的相关性来估计预测能力。结果因种群和性状而异,但预测能力总体较高(平均而言,FW为0.60,SC为0.72,TA为0.65)。

结论

本研究评估了桃中与产量和果实品质相关的高聚基因性状进行基因组选择的可行性。缺失基因型的填充准确性高达96%,基因组预测能力平均为0.65,但果实重量的预测能力可高达0.84,可滴定酸度的预测能力可高达0.83。估计的重复性可能在桃生产中典型的长周期管理中非常有用。总体而言,这些结果对于基因组选择在桃育种计划中的应用非常有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63a1/5460546/eced5716a9eb/12864_2017_3781_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验