Cheng Mary Hongying, Garcia-Olivares Jennie, Wasserman Steven, DiPietro Jennifer, Bahar Ivet
Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.
Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, Bethesda, Maryland 20892.
J Biol Chem. 2017 Jul 28;292(30):12471-12482. doi: 10.1074/jbc.M116.763565. Epub 2017 Jun 5.
The human dopamine (DA) transporter (hDAT) is a key regulator of neurotransmission and a target for antidepressants and addictive drugs. Despite the recent resolution of dDAT structures from , complete understanding of its mechanism of function and even information on its biological assembly is lacking. The resolved dDAT structures are monomeric, but growing evidence suggests that hDAT might function as a multimer, and its oligomerization may be relevant to addictive drug effects. Here, using structure-based computations, we examined the possible mechanisms of hDAT dimerization and its dynamics in a lipid bilayer. Using a combination of site-directed mutagenesis, DA-uptake, and cross-linking experiments that exploited the capacity of Cys-306 to form intermonomeric disulfide bridges in the presence of an oxidizing agent, we tested the effects of mutations at transmembrane segment (TM) 6 and 12 helices in HEK293 cells. The most probable structural model for hDAT dimer suggested by computations and experiments differed from the dimeric structure resolved for the bacterial homolog, LeuT, presumably because of a kink at TM12 preventing favorable monomer packing. Instead, TM2, TM6, and TM11 line the dimer interface. Molecular dynamics simulations of the dimeric hDAT indicated that the two subunits tend to undergo cooperative structural changes, both on local (extracellular gate opening/closure) and global (transition between outward-facing and inward-facing states) scales. These observations suggest that hDAT transport properties may be allosterically modulated under conditions promoting dimerization. Our study provides critical insights into approaches for examining the oligomerization of neurotransmitter transporters and sheds light on their drug modulation.
人类多巴胺(DA)转运体(hDAT)是神经传递的关键调节因子,也是抗抑郁药和成瘾性药物的作用靶点。尽管最近已解析出细菌多巴胺转运体(dDAT)的结构,但仍缺乏对其功能机制的全面了解,甚至对其生物组装信息也知之甚少。已解析出的dDAT结构为单体,但越来越多的证据表明,hDAT可能以多聚体形式发挥作用,其寡聚化可能与成瘾性药物的作用有关。在此,我们利用基于结构的计算方法,研究了hDAT在脂质双分子层中形成二聚体的可能机制及其动力学。我们结合定点突变、DA摄取和交联实验,利用半胱氨酸306在氧化剂存在下形成单体间二硫键的能力,在HEK293细胞中测试了跨膜区段(TM)6和12螺旋处突变的影响。计算和实验表明,hDAT二聚体最可能的结构模型与细菌同源物亮氨酸转运体(LeuT)解析出的二聚体结构不同,这可能是由于TM12处的扭结阻碍了有利的单体堆积。相反,TM2、TM6和TM11构成了二聚体界面。hDAT二聚体的分子动力学模拟表明,两个亚基在局部(细胞外门的打开/关闭)和整体(外向和内向状态之间的转变)尺度上都倾向于发生协同结构变化。这些观察结果表明,在促进二聚化的条件下,hDAT的转运特性可能受到变构调节。我们的研究为研究神经递质转运体寡聚化的方法提供了关键见解,并揭示了它们的药物调节机制。