Wang Zhen, Antoniou Dimitri, Schwartz Steven D, Schramm Vern L
Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States.
Department of Chemistry and Biochemistry, University of Arizona , P.O. Box 210041, 1306 East University Boulevard, Tucson, Arizona 85721, United States.
Biochemistry. 2016 Jan 12;55(1):157-66. doi: 10.1021/acs.biochem.5b01241. Epub 2015 Dec 23.
Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with (13)C, (15)N, and nonexchangeable (2)H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis.
大肠杆菌二氢叶酸还原酶(ecDHFR)被用于研究酶催化的基本原理。ecDHFR催化的氢化物转移是否与快速的蛋白质运动相关,这一点仍存在争议。先前使用用(13)C、(15)N和不可交换的(2)H标记的重质ecDHFR蛋白质进行的研究报告了ecDHFR的酶质量依赖性氢化物转移动力学。在此,我们报告了经过改进的实验和计算研究,以确定氢化物转移与蛋白质质量无关。相反,我们发现重质DHFR的底物解离速率常数更快。先前报道的轻质和重质DHFR之间的动力学差异可能源于化学步骤之外的动力学步骤。这项研究证实,ecDHFR中快速(飞秒到皮秒)的蛋白质运动与氢化物转移不相关,并提供了一种综合的计算和实验方法来解析与酶催化中的化学步骤相关的快速动力学。