Suppr超能文献

通过过渡路径采样、动力学同位素效应和重酶研究对二氢叶酸还原酶中的氢化物转移进行研究。

Hydride Transfer in DHFR by Transition Path Sampling, Kinetic Isotope Effects, and Heavy Enzyme Studies.

作者信息

Wang Zhen, Antoniou Dimitri, Schwartz Steven D, Schramm Vern L

机构信息

Department of Biochemistry, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States.

Department of Chemistry and Biochemistry, University of Arizona , P.O. Box 210041, 1306 East University Boulevard, Tucson, Arizona 85721, United States.

出版信息

Biochemistry. 2016 Jan 12;55(1):157-66. doi: 10.1021/acs.biochem.5b01241. Epub 2015 Dec 23.

Abstract

Escherichia coli dihydrofolate reductase (ecDHFR) is used to study fundamental principles of enzyme catalysis. It remains controversial whether fast protein motions are coupled to the hydride transfer catalyzed by ecDHFR. Previous studies with heavy ecDHFR proteins labeled with (13)C, (15)N, and nonexchangeable (2)H reported enzyme mass-dependent hydride transfer kinetics for ecDHFR. Here, we report refined experimental and computational studies to establish that hydride transfer is independent of protein mass. Instead, we found the rate constant for substrate dissociation to be faster for heavy DHFR. Previously reported kinetic differences between light and heavy DHFRs likely arise from kinetic steps other than the chemical step. This study confirms that fast (femtosecond to picosecond) protein motions in ecDHFR are not coupled to hydride transfer and provides an integrative computational and experimental approach to resolve fast dynamics coupled to chemical steps in enzyme catalysis.

摘要

大肠杆菌二氢叶酸还原酶(ecDHFR)被用于研究酶催化的基本原理。ecDHFR催化的氢化物转移是否与快速的蛋白质运动相关,这一点仍存在争议。先前使用用(13)C、(15)N和不可交换的(2)H标记的重质ecDHFR蛋白质进行的研究报告了ecDHFR的酶质量依赖性氢化物转移动力学。在此,我们报告了经过改进的实验和计算研究,以确定氢化物转移与蛋白质质量无关。相反,我们发现重质DHFR的底物解离速率常数更快。先前报道的轻质和重质DHFR之间的动力学差异可能源于化学步骤之外的动力学步骤。这项研究证实,ecDHFR中快速(飞秒到皮秒)的蛋白质运动与氢化物转移不相关,并提供了一种综合的计算和实验方法来解析与酶催化中的化学步骤相关的快速动力学。

相似文献

2
The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase.蛋白质质量调节对人二氢叶酸还原酶的影响。
Biochemistry. 2016 Feb 23;55(7):1100-6. doi: 10.1021/acs.biochem.5b00945. Epub 2016 Feb 9.

引用本文的文献

1
Mutexa: A Computational Ecosystem for Intelligent Protein Engineering.Mutexa:智能蛋白质工程的计算生态系统。
J Chem Theory Comput. 2023 Nov 14;19(21):7459-7477. doi: 10.1021/acs.jctc.3c00602. Epub 2023 Oct 12.
2
Protein Dynamics and Enzymatic Catalysis.蛋白质动力学与酶催化。
J Phys Chem B. 2023 Mar 30;127(12):2649-2660. doi: 10.1021/acs.jpcb.3c00477. Epub 2023 Mar 21.
3
Perspective: Path Sampling Methods Applied to Enzymatic Catalysis.观点:应用于酶催化的路径采样方法。
J Chem Theory Comput. 2022 Nov 8;18(11):6397-6406. doi: 10.1021/acs.jctc.2c00734. Epub 2022 Oct 28.
10
Evolution Conserves the Network of Coupled Residues in Dihydrofolate Reductase.进化保存二氢叶酸还原酶中偶联残基的网络。
Biochemistry. 2019 Sep 17;58(37):3861-3868. doi: 10.1021/acs.biochem.9b00460. Epub 2019 Aug 30.

本文引用的文献

7
How Accurate Are Transition States from Simulations of Enzymatic Reactions?酶促反应模拟中的过渡态有多准确?
J Chem Theory Comput. 2014 May 13;10(5):1863-1871. doi: 10.1021/ct5000742. Epub 2014 Apr 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验