Suppr超能文献

后生动物原生殖细胞特化模式的成因及其进化后果。

Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans.

机构信息

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138.

Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138;

出版信息

Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5784-5791. doi: 10.1073/pnas.1610600114.

Abstract

In animals, primordial germ cells (PGCs) give rise to the germ lines, the cell lineages that produce sperm and eggs. PGCs form in embryogenesis, typically by one of two modes: a likely ancestral mode wherein germ cells are induced during embryogenesis by cell-cell signaling (induction) or a derived mechanism whereby germ cells are specified by using germ plasm-that is, maternally specified germ-line determinants (inheritance). The causes of the shift to germ plasm for PGC specification in some animal clades remain largely unknown, but its repeated convergent evolution raises the question of whether it may result from or confer an innate selective advantage. It has been hypothesized that the acquisition of germ plasm confers enhanced evolvability, resulting from the release of selective constraint on somatic gene networks in embryogenesis, thus leading to acceleration of an organism's protein-sequence evolution, particularly for genes expressed at early developmental stages, and resulting in high speciation rates in germ plasm-containing lineages (denoted herein as the "PGC-specification hypothesis"). Although that hypothesis, if supported, could have major implications for animal evolution, our recent large-scale coding-sequence analyses from vertebrates and invertebrates provided important examples of genera that do not support the hypothesis of liberated constraint under germ plasm. Here, we consider reasons why germ plasm might be neither a direct target of selection nor causally linked to accelerated animal evolution. We explore alternate scenarios that could explain the repeated evolution of germ plasm and propose potential consequences of the inheritance and induction modes to animal evolutionary biology.

摘要

在动物中,原始生殖细胞(PGC)产生生殖系,即产生精子和卵子的细胞谱系。PGC 通常通过两种模式之一在胚胎发生中形成:一种可能是祖先模式,其中生殖细胞通过细胞间信号(诱导)在胚胎发生中被诱导;另一种是衍生机制,其中生殖细胞通过使用生殖质(即母体指定的生殖系决定因素)来指定(遗传)。在某些动物类群中,PGC 特异性指定向生殖质转变的原因在很大程度上仍然未知,但它的重复趋同进化提出了一个问题,即它是否可能是由内在的选择优势导致或赋予的。有人假设,生殖质的获得赋予了更高的进化能力,这是由于胚胎发生中对体细胞基因网络的选择约束的释放,从而导致生物体的蛋白质序列进化加速,特别是对于在早期发育阶段表达的基因,并导致含有生殖质的谱系的高物种形成率(在此表示为“PGC 特异性假说”)。尽管如果该假说得到支持,可能对动物进化具有重大影响,但我们最近从脊椎动物和无脊椎动物进行的大规模编码序列分析提供了重要的例子,这些例子不支持生殖质下的约束释放假说。在这里,我们考虑生殖质为什么既不是选择的直接目标,也与加速动物进化没有因果关系的原因。我们探讨了可以解释生殖质重复进化的替代方案,并提出了遗传和诱导模式对动物进化生物学的潜在后果。

相似文献

1
Causes and evolutionary consequences of primordial germ-cell specification mode in metazoans.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):5784-5791. doi: 10.1073/pnas.1610600114.
2
Evolution of the germ line-soma relationship in vertebrate embryos.
Reproduction. 2011 Mar;141(3):291-300. doi: 10.1530/REP-10-0474. Epub 2011 Jan 12.
3
4
Contrasting patterns of molecular evolution in metazoan germ line genes.
BMC Evol Biol. 2019 Feb 11;19(1):53. doi: 10.1186/s12862-019-1363-x.
5
Acquisition of germ plasm accelerates vertebrate evolution.
Science. 2014 Apr 11;344(6180):200-3. doi: 10.1126/science.1249325.
6
Specification of primordial germ cells in medaka (Oryzias latipes).
BMC Dev Biol. 2007 Jan 11;7:3. doi: 10.1186/1471-213X-7-3.
7
Evolution of predetermined germ cells in vertebrate embryos: implications for macroevolution.
Evol Dev. 2003 Jul-Aug;5(4):414-31. doi: 10.1046/j.1525-142x.2003.03048.x.
8
Germ cell specification requires zygotic mechanisms rather than germ plasm in a basally branching insect.
Curr Biol. 2013 May 20;23(10):835-42. doi: 10.1016/j.cub.2013.03.063. Epub 2013 Apr 25.
9
Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos.
Development. 2014 Jun;141(12):2429-40. doi: 10.1242/dev.105346.

引用本文的文献

1
Formation of Drosophila germ cells requires spatial patterning of phospholipids.
Curr Biol. 2025 Apr 7;35(7):1612-1621.e3. doi: 10.1016/j.cub.2025.01.071. Epub 2025 Mar 5.
2
The use of extreme pathway (ExPa) analysis to identify conserved reproductive transcriptional-regulatory networks in humans, mice, and zebrafish.
Syst Biol Reprod Med. 2023 Aug;69(4):271-287. doi: 10.1080/19396368.2023.2188996. Epub 2023 Apr 6.
3
The Embryonic Origin of Primordial Germ Cells in the Tardigrade .
bioRxiv. 2023 Feb 15:2023.01.02.522500. doi: 10.1101/2023.01.02.522500.
4
Uncoupling cell division and cytokinesis during germline development in metazoans.
Front Cell Dev Biol. 2022 Nov 3;10:1001689. doi: 10.3389/fcell.2022.1001689. eCollection 2022.
5
Stay on the road: from germ cell specification to gonadal colonization in mammals.
Philos Trans R Soc Lond B Biol Sci. 2022 Dec 5;377(1865):20210259. doi: 10.1098/rstb.2021.0259. Epub 2022 Oct 17.
6
Inheritance of somatic mutations by animal offspring.
Sci Adv. 2022 Sep 2;8(35):eabn0707. doi: 10.1126/sciadv.abn0707. Epub 2022 Aug 31.
7
Primordial Germ Cell Development in the Poeciliid, , Reveals Shared Features Between Lecithotrophs and Matrotrophs.
Front Cell Dev Biol. 2022 Mar 1;10:793498. doi: 10.3389/fcell.2022.793498. eCollection 2022.
8
Evolution of germ plasm assembly and function among the insects.
Curr Opin Insect Sci. 2022 Apr;50:100883. doi: 10.1016/j.cois.2022.100883. Epub 2022 Feb 2.
10
Does Shoot Apical Meristem Function as the Germline in Safeguarding Against Excess of Mutations?
Front Plant Sci. 2021 Aug 5;12:707740. doi: 10.3389/fpls.2021.707740. eCollection 2021.

本文引用的文献

1
ON IRREVERSIBLE EVOLUTION.
Evolution. 1985 Sep;39(5):1149-1155. doi: 10.1111/j.1558-5646.1985.tb00455.x.
2
Genetic drift and mutational hazard in the evolution of salamander genomic gigantism.
Evolution. 2016 Dec;70(12):2865-2878. doi: 10.1111/evo.13084. Epub 2016 Oct 26.
3
4
Asymmetric division of contractile domains couples cell positioning and fate specification.
Nature. 2016 Aug 18;536(7616):344-348. doi: 10.1038/nature18958. Epub 2016 Aug 3.
5
Direct estimate of the rate of germline mutation in a bird.
Genome Res. 2016 Sep;26(9):1211-8. doi: 10.1101/gr.204669.116. Epub 2016 Jul 13.
6
Evolution of the Insertion-Deletion Mutation Rate Across the Tree of Life.
G3 (Bethesda). 2016 Aug 9;6(8):2583-91. doi: 10.1534/g3.116.030890.
7
Primordial Germ Cell Specification and Migration.
F1000Res. 2015 Dec 16;4. doi: 10.12688/f1000research.6995.1. eCollection 2015.
9
Timing, rates and spectra of human germline mutation.
Nat Genet. 2016 Feb;48(2):126-133. doi: 10.1038/ng.3469. Epub 2015 Dec 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验