Suppr超能文献

合成纳米级静电粒子作为软骨修复的生长因子载体

Synthetic nanoscale electrostatic particles as growth factor carriers for cartilage repair.

作者信息

Shah Nisarg J, Geiger Brett C, Quadir Mohiuddin A, Hyder Md Nasim, Krishnan Yamini, Grodzinsky Alan J, Hammond Paula T

机构信息

Dept. of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139.

David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge MA 02142.

出版信息

Bioeng Transl Med. 2016 Sep;1(3):347-356. doi: 10.1002/btm2.10043. Epub 2016 Nov 18.

Abstract

The efficient transport of biological therapeutic materials to target tissues within the body is critical to their efficacy. In cartilage tissue, the lack of blood vessels prevents the entry of systemically administered drugs at therapeutic levels. Within the articulating joint complex, the dense and highly charged extracellular matrix (ECM) hinders the transport of locally administered therapeutic molecules. Consequently, cartilage injury is difficult to treat and frequently results in debilitating osteoarthritis. Here we show a generalizable approach in which the electrostatic assembly of synthetic polypeptides and a protein, insulin-like growth factor-1 (IGF-1), can be used as an early interventional therapy to treat injury to the cartilage. We demonstrated that poly(glutamic acid) and poly(arginine) associated with the IGF-1 via electrostatic interactions, forming a net charged nanoscale polyelectrolyte complex (nanoplex). We observed that the nanoplex diffused into cartilage plugs in vitro and stimulated ECM production. In vivo, we monitored the transport, retention and therapeutic efficacy of the nanoplex in an established rat model of cartilage injury. A single therapeutic dose, when administered within 48 hours of the injury, conferred protection against cartilage degradation and controlled interleukin-1 (IL-1) mediated inflammation. IGF-1 contained in the nanoplex was detected in the joint space for up to 4 weeks following administration and retained bioactivity. The results indicate the potential of this approach as an early intervention therapy following joint injury to delay or even entirely prevent the onset of osteoarthritis.

摘要

将生物治疗材料有效输送到体内的靶组织对其疗效至关重要。在软骨组织中,缺乏血管会阻止全身给药的药物以治疗水平进入。在关节复合体中,致密且高度带电的细胞外基质(ECM)阻碍了局部给药治疗分子的运输。因此,软骨损伤难以治疗,并且经常导致使人衰弱的骨关节炎。在这里,我们展示了一种通用方法,其中合成多肽与蛋白质胰岛素样生长因子-1(IGF-1)的静电组装可作为治疗软骨损伤的早期介入疗法。我们证明聚谷氨酸和聚精氨酸通过静电相互作用与IGF-1结合,形成带净电荷的纳米级聚电解质复合物(纳米复合物)。我们观察到纳米复合物在体外扩散到软骨塞中并刺激ECM产生。在体内,我们在已建立的大鼠软骨损伤模型中监测了纳米复合物的运输、保留和治疗效果。在损伤后48小时内给予单次治疗剂量,可保护软骨免受降解并控制白细胞介素-1(IL-1)介导的炎症。给药后长达4周在关节腔中检测到纳米复合物中含有的IGF-1,并且其保留了生物活性。结果表明这种方法作为关节损伤后早期干预疗法具有延迟甚至完全预防骨关节炎发作的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/153e/5689531/8dd28cc651b6/BTM2-1-347-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验