Suppr超能文献

放手:细菌基因组缩减解决了在底物受限环境中适应捕食性死亡的困境。

Letting go: bacterial genome reduction solves the dilemma of adapting to predation mortality in a substrate-restricted environment.

作者信息

Baumgartner Michael, Roffler Stefan, Wicker Thomas, Pernthaler Jakob

机构信息

Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.

Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.

出版信息

ISME J. 2017 Oct;11(10):2258-2266. doi: 10.1038/ismej.2017.87. Epub 2017 Jun 6.

Abstract

Resource limitation and predation mortality are major determinants of microbial population dynamics, and optimization for either aspect is considered to imply a trade-off with respect to the other. Adaptation to these selective factors may, moreover, lead to disadvantages at rich growth conditions. We present an example of a concomitant evolutionary optimization to both, substrate limitation and predation in an aggregate-forming freshwater bacterial isolate, and we elucidate an underlying genomic mechanism. Bacteria were propagated in serial batch culture in a nutrient-restricted environment either with or without a bacterivorous flagellate. Strains isolated after 26 growth cycles of the predator-prey co-cultures formed as much total biomass as the ancestor at ancestral growth conditions, albeit largely reallocated to cell aggregates. A ~273 kbp genome fragment was lost in three strains that had independently evolved with predators. These strains had significantly higher growth yield on substrate-restricted media than others that were isolated from the same treatment before the excision event. Under predation pressure, the isolates with the deletion outcompeted both, the ancestor and the strains evolved without predators even at rich growth conditions. At the same time, genome reduction led to a growth disadvantage in the presence of benzoate due to the loss of the respective degradation pathway, suggesting that niche constriction might be the price for the bidirectional optimization.

摘要

资源限制和捕食死亡率是微生物种群动态的主要决定因素,而且针对这两个方面的优化都被认为意味着在另一方面存在权衡。此外,适应这些选择因素可能会在丰富的生长条件下导致劣势。我们展示了一个在形成聚集体的淡水细菌分离物中同时对底物限制和捕食进行进化优化的例子,并阐明了其潜在的基因组机制。细菌在营养受限的环境中进行连续分批培养,有无食细菌的鞭毛虫存在。在捕食者 - 猎物共培养26个生长周期后分离出的菌株,在祖先生长条件下形成的总生物量与祖先相当,尽管大部分重新分配到了细胞聚集体中。在三个与捕食者独立进化的菌株中丢失了一个约273 kbp的基因组片段。这些菌株在底物受限的培养基上的生长产量明显高于在切除事件发生前从相同处理中分离出的其他菌株。在捕食压力下,缺失该片段的分离株甚至在丰富的生长条件下也比祖先和未与捕食者共同进化的菌株更具竞争力。同时,由于相应降解途径的丧失,基因组缩减导致在存在苯甲酸盐的情况下生长处于劣势,这表明生态位收缩可能是双向优化的代价。

相似文献

3
Aggregate formation in a freshwater bacterial strain induced by growth state and conspecific chemical cues.
Environ Microbiol. 2010 Sep;12(9):2486-95. doi: 10.1111/j.1462-2920.2010.02222.x. Epub 2010 Apr 19.
4
Structural and functional patterns of bacterial communities in response to protist predation along an experimental productivity gradient.
Environ Microbiol. 2008 Oct;10(10):2857-71. doi: 10.1111/j.1462-2920.2008.01713.x. Epub 2008 Aug 5.
6
Foraging and vulnerability traits modify predator-prey body mass allometry: freshwater macroinvertebrates as a case study.
J Anim Ecol. 2013 Sep;82(5):1031-41. doi: 10.1111/1365-2656.12078. Epub 2013 Jul 19.
7
Interspecific competition and protistan grazing affect the coexistence of freshwater betaproteobacterial strains.
FEMS Microbiol Ecol. 2016 Feb;92(2). doi: 10.1093/femsec/fiv156. Epub 2015 Dec 9.
8
Antibiotic effects of three strains of chrysophytes (Ochromonas, Poterioochromonas) on freshwater bacterial isolates.
FEMS Microbiol Ecol. 2010 Feb;71(2):281-90. doi: 10.1111/j.1574-6941.2009.00800.x. Epub 2009 Oct 23.
9
Predation on prokaryotes in the water column and its ecological implications.
Nat Rev Microbiol. 2005 Jul;3(7):537-46. doi: 10.1038/nrmicro1180.
10
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.

引用本文的文献

1
Zooplankton as a Transitional Host for in Freshwater.
Appl Environ Microbiol. 2022 May 10;88(9):e0252221. doi: 10.1128/aem.02522-21. Epub 2022 Apr 13.
2
Divergent paths in the evolutionary history of maternally transmitted clam symbionts.
Proc Biol Sci. 2022 Mar 9;289(1970):20212137. doi: 10.1098/rspb.2021.2137.
3
Rhizomal Reclassification of Living Organisms.
Int J Mol Sci. 2021 May 26;22(11):5643. doi: 10.3390/ijms22115643.
4
Model Microbial Consortia as Tools for Understanding Complex Microbial Communities.
Curr Genomics. 2018 Dec;19(8):723-733. doi: 10.2174/1389202919666180911131206.
6
Predation Enhances Environmental Adaptation of the Carp Pathogenic Strain NJ-35.
Front Cell Infect Microbiol. 2018 Mar 14;8:76. doi: 10.3389/fcimb.2018.00076. eCollection 2018.

本文引用的文献

1
Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria.
Nat Ecol Evol. 2016 Nov 7;1(1):10. doi: 10.1038/s41559-016-0010.
3
Terrestrial origin of bacterial communities in complex boreal freshwater networks.
Ecol Lett. 2015 Nov;18(11):1198-1206. doi: 10.1111/ele.12499. Epub 2015 Aug 25.
5
Comparative single-cell genomics reveals potential ecological niches for the freshwater acI Actinobacteria lineage.
ISME J. 2014 Dec;8(12):2503-16. doi: 10.1038/ismej.2014.135. Epub 2014 Aug 5.
6
Implications of streamlining theory for microbial ecology.
ISME J. 2014 Aug;8(8):1553-65. doi: 10.1038/ismej.2014.60. Epub 2014 Apr 17.
7
The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST).
Nucleic Acids Res. 2014 Jan;42(Database issue):D206-14. doi: 10.1093/nar/gkt1226. Epub 2013 Nov 29.
8
Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities.
Appl Environ Microbiol. 2013 Jun;79(12):3724-33. doi: 10.1128/AEM.00518-13. Epub 2013 Apr 5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验