1 Yonsei Biomedical Research Institute, Yonsei University College of Medicine , Seoul, Korea.
2 College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University , Seoul, Korea.
Antioxid Redox Signal. 2018 Mar 1;28(7):537-557. doi: 10.1089/ars.2017.7167. Epub 2017 Jul 10.
Hydrogen peroxide (HO) is produced on stimulation of many cell surface receptors and serves as an intracellular messenger in the regulation of diverse physiological events, mostly by oxidizing cysteine residues of effector proteins. Mammalian cells express multiple HO-eliminating enzymes, including catalase, glutathione peroxidase (GPx), and peroxiredoxin (Prx). A conserved cysteine in Prx family members is the site of oxidation by HO. Peroxiredoxins possess a high-affinity binding site for HO that is lacking in catalase and GPx and which renders the catalytic cysteine highly susceptible to oxidation, with a rate constant several orders of magnitude greater than that for oxidation of cysteine in most HO effector proteins. Moreover, Prxs are abundant and present in all subcellular compartments. The cysteines of most HO effectors are therefore at a competitive disadvantage for reaction with HO. Recent Advances: Here we review intracellular sources of HO as well as HO target proteins classified according to biochemical and cellular function. We then highlight two strategies implemented by cells to overcome the kinetic disadvantage of most target proteins with regard to HO-mediated oxidation: transient inactivation of local Prx molecules via phosphorylation, and indirect oxidation of target cysteines via oxidized Prx. Critical Issues and Future Directions: Recent studies suggest that only a small fraction of the total pools of Prxs and HO effector proteins localized in specific subcellular compartments participates in HO signaling. Development of sensitive tools to selectively detect phosphorylated Prxs and oxidized effector proteins is needed to provide further insight into HO signaling. Antioxid. Redox Signal. 28, 537-557.
过氧化氢 (HO) 在刺激许多细胞表面受体时产生,并作为调节多种生理事件的细胞内信使,主要通过氧化效应蛋白的半胱氨酸残基。哺乳动物细胞表达多种 HO 消除酶,包括过氧化氢酶、谷胱甘肽过氧化物酶 (GPx) 和过氧化物酶 (Prx)。Prx 家族成员中的保守半胱氨酸是被 HO 氧化的位点。过氧化物酶具有与 HO 的高亲和力结合位点,而这种结合位点在过氧化氢酶和 GPx 中缺失,这使得催化半胱氨酸极易被氧化,其速率常数比大多数 HO 效应蛋白中半胱氨酸的氧化速率常数高几个数量级。此外,Prxs 丰富存在于所有亚细胞区室中。因此,大多数 HO 效应物的半胱氨酸在与 HO 反应方面处于竞争劣势。最新进展:在这里,我们回顾了 HO 的细胞内来源以及根据生化和细胞功能分类的 HO 靶蛋白。然后,我们强调了细胞实施的两种策略,以克服大多数靶蛋白与 HO 介导的氧化反应的动力学劣势:通过磷酸化瞬时失活局部 Prx 分子,以及通过氧化的 Prx 间接氧化靶半胱氨酸。关键问题和未来方向:最近的研究表明,只有一小部分定位于特定亚细胞区室的总 Prx 和 HO 效应蛋白库参与 HO 信号转导。需要开发敏感的工具来选择性地检测磷酸化的 Prx 和氧化的效应蛋白,以进一步深入了解 HO 信号转导。抗氧化剂。氧化还原信号。28, 537-557。