Suppr超能文献

碳酸氢盐/二氧化碳对增加了人过氧化物酶 1 介导的过氧化氢超氧化。

The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.

机构信息

Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, Brazil.

Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo 05508-090, Brazil.

出版信息

J Biol Chem. 2019 Sep 20;294(38):14055-14067. doi: 10.1074/jbc.RA119.008825. Epub 2019 Jul 30.

Abstract

2-Cys peroxiredoxins (Prxs) rapidly reduce HO, thereby acting as antioxidants and also as sensors and transmitters of HO signals in cells. Interestingly, eukaryotic 2-Cys Prxs lose their peroxidase activity at high HO levels. Under these conditions, HO oxidizes the sulfenic acid derivative of the Prx peroxidatic Cys (CSOH) to the sulfinate (CSO) and sulfonated (CSO) forms, redirecting the CSOH intermediate from the catalytic cycle to the hyperoxidation/inactivation pathway. The susceptibility of 2-Cys Prxs to hyperoxidation varies greatly and depends on structural features that affect the lifetime of the CSOH intermediate. Among the human Prxs, Prx1 has an intermediate susceptibility to HO and was selected here to investigate the effect of a physiological concentration of HCO/CO (25 mm) on its hyperoxidation. Immunoblotting and kinetic and MS/MS experiments revealed that HCO/CO increases Prx1 hyperoxidation and inactivation both in the presence of excess HO and during enzymatic (NADPH/thioredoxin reductase/thioredoxin) and chemical (DTT) turnover. We hypothesized that the stimulating effect of HCO/CO was due to HCO, a peroxide present in equilibrated solutions of HO and HCO/CO Indeed, additional experiments and calculations uncovered that HCO oxidizes CSOH to CSO with a second-order rate constant 2 orders of magnitude higher than that of HO ((1.5 ± 0.1) × 10 and (2.9 ± 0.2) × 10 m·s, respectively) and that HCO is 250 times more efficient than HO at inactivating 1% Prx1 per turnover. The fact that the biologically ubiquitous HCO/CO pair stimulates Prx1 hyperoxidation and inactivation bears relevance to Prx1 functions beyond its antioxidant activity.

摘要

2- 半胱氨酸过氧化物酶(Prx)迅速还原 HO,从而在细胞中充当抗氧化剂以及 HO 信号的传感器和转导器。有趣的是,真核生物 2- 半胱氨酸 Prx 在高 HO 水平下失去其过氧化物酶活性。在这些条件下,HO 将 Prx 过氧催化半胱氨酸(CSOH)的亚磺酸衍生物氧化为亚磺酸盐(CSO)和磺酸盐(CSO )形式,将 CSOH 中间体从催化循环重定向到过氧氧化/失活途径。2- 半胱氨酸 Prx 对过氧氧化的敏感性差异很大,这取决于影响 CSOH 中间体寿命的结构特征。在人类 Prx 中,Prx1 对 HO 的敏感性中等,因此选择在这里研究生理浓度的 HCO/CO(25 mM)对其过氧氧化的影响。免疫印迹、动力学和 MS/MS 实验表明,HCO/CO 增加了 Prx1 在 HO 过量存在下以及在酶促(NADPH/硫氧还蛋白还原酶/硫氧还蛋白)和化学(DTT)循环过程中的过氧氧化和失活。我们假设 HCO/CO 的刺激作用是由于 HCO 引起的,HCO 是 HO 和 HCO/CO 平衡溶液中的过氧化物。事实上,额外的实验和计算揭示了 HCO 将 CSOH 氧化为 CSO 的二级速率常数比 HO 高 2 个数量级(分别为(1.5 ± 0.1)×10 和(2.9 ± 0.2)×10 m·s),并且 HCO 在每轮循环中失活 1%Prx1 的效率比 HO 高 250 倍。生物普遍存在的 HCO/CO 对 Prx1 过氧氧化和失活的刺激作用与 Prx1 的抗氧化活性以外的功能有关。

相似文献

1
The bicarbonate/carbon dioxide pair increases hydrogen peroxide-mediated hyperoxidation of human peroxiredoxin 1.
J Biol Chem. 2019 Sep 20;294(38):14055-14067. doi: 10.1074/jbc.RA119.008825. Epub 2019 Jul 30.
2
Enhanced hyperoxidation of peroxiredoxin 2 and peroxiredoxin 3 in the presence of bicarbonate/CO.
Free Radic Biol Med. 2019 Dec;145:1-7. doi: 10.1016/j.freeradbiomed.2019.09.010. Epub 2019 Sep 12.
3
Hyperoxidation of peroxiredoxins 2 and 3: rate constants for the reactions of the sulfenic acid of the peroxidatic cysteine.
J Biol Chem. 2013 May 17;288(20):14170-14177. doi: 10.1074/jbc.M113.460881. Epub 2013 Mar 29.
4
Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins.
J Biol Chem. 2018 Jul 27;293(30):11901-11912. doi: 10.1074/jbc.RA117.001690. Epub 2018 Jun 8.
5
Molecular basis for the resistance of human mitochondrial 2-Cys peroxiredoxin 3 to hyperoxidation.
J Biol Chem. 2013 Oct 11;288(41):29714-23. doi: 10.1074/jbc.M113.473470. Epub 2013 Sep 3.
7
Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?
Antioxid Redox Signal. 2018 Mar 1;28(7):574-590. doi: 10.1089/ars.2017.7214. Epub 2017 Sep 8.
8
Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H₂O₂, and protein chaperones.
Antioxid Redox Signal. 2011 Aug 1;15(3):781-94. doi: 10.1089/ars.2010.3393. Epub 2011 Mar 31.
9
Kinetics of peroxiredoxins and their role in the decomposition of peroxynitrite.
Subcell Biochem. 2007;44:83-113. doi: 10.1007/978-1-4020-6051-9_5.
10
Modifying the resolving cysteine affects the structure and hydrogen peroxide reactivity of peroxiredoxin 2.
J Biol Chem. 2021 Jan-Jun;296:100494. doi: 10.1016/j.jbc.2021.100494. Epub 2021 Mar 2.

引用本文的文献

1
Sensing molecular carbon dioxide: a translational focus for respiratory disease.
Physiol Rev. 2025 Oct 1;105(4):2657-2691. doi: 10.1152/physrev.00022.2024. Epub 2025 Jul 16.
2
Endothelial Reactive Oxygen Species: Key Players in Cardiovascular Health and Disease.
Antioxid Redox Signal. 2025 Jun;42(16-18):905-932. doi: 10.1089/ars.2024.0706. Epub 2024 Sep 30.
3
Production of Peroxymonocarbonate by Steady-State Micromolar HO and Activated Macrophages in the Presence of CO/HCO Evidenced by Boronate Probes.
Chem Res Toxicol. 2024 Jul 15;37(7):1129-1138. doi: 10.1021/acs.chemrestox.4c00059. Epub 2024 Jun 25.
4
Carbon dioxide/bicarbonate is required for sensitive inactivation of mammalian glyceraldehyde-3-phosphate dehydrogenase by hydrogen peroxide.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2221047120. doi: 10.1073/pnas.2221047120. Epub 2023 Apr 25.
6
Interplay of carbon dioxide and peroxide metabolism in mammalian cells.
J Biol Chem. 2022 Sep;298(9):102358. doi: 10.1016/j.jbc.2022.102358. Epub 2022 Aug 9.
7
Carbon dioxide redox metabolites in oxidative eustress and oxidative distress.
Biophys Rev. 2021 Nov 6;13(6):889-891. doi: 10.1007/s12551-021-00860-3. eCollection 2021 Dec.
9
Can thiol-based redox systems be utilized as parts for synthetic biology applications?
Redox Rep. 2021 Dec;26(1):147-159. doi: 10.1080/13510002.2021.1966183.

本文引用的文献

2
Carbon dioxide-catalyzed peroxynitrite reactivity - The resilience of the radical mechanism after two decades of research.
Free Radic Biol Med. 2019 May 1;135:210-215. doi: 10.1016/j.freeradbiomed.2019.02.026. Epub 2019 Feb 25.
3
Differential parameters between cytosolic 2-Cys peroxiredoxins, PRDX1 and PRDX2.
Protein Sci. 2019 Jan;28(1):191-201. doi: 10.1002/pro.3520. Epub 2018 Nov 12.
4
Novel hyperoxidation resistance motifs in 2-Cys peroxiredoxins.
J Biol Chem. 2018 Jul 27;293(30):11901-11912. doi: 10.1074/jbc.RA117.001690. Epub 2018 Jun 8.
5
Differential Kinetics of Two-Cysteine Peroxiredoxin Disulfide Formation Reveal a Novel Model for Peroxide Sensing.
Biochemistry. 2018 Jun 19;57(24):3416-3424. doi: 10.1021/acs.biochem.8b00188. Epub 2018 Mar 30.
6
Peroxynitrite preferentially oxidizes the dithiol redox motifs of protein-disulfide isomerase.
J Biol Chem. 2018 Jan 26;293(4):1450-1465. doi: 10.1074/jbc.M117.807016. Epub 2017 Nov 30.
7
Hyperoxidation of Peroxiredoxins: Gain or Loss of Function?
Antioxid Redox Signal. 2018 Mar 1;28(7):574-590. doi: 10.1089/ars.2017.7214. Epub 2017 Sep 8.
8
Urate hydroperoxide oxidizes human peroxiredoxin 1 and peroxiredoxin 2.
J Biol Chem. 2017 May 26;292(21):8705-8715. doi: 10.1074/jbc.M116.767657. Epub 2017 Mar 27.
10
Lifespan Control by Redox-Dependent Recruitment of Chaperones to Misfolded Proteins.
Cell. 2016 Jun 30;166(1):140-51. doi: 10.1016/j.cell.2016.05.006. Epub 2016 Jun 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验