Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712;
Howard Hughes Medical Institute, The University of Texas at Austin, Austin, TX 78712.
Proc Natl Acad Sci U S A. 2017 Jun 20;114(25):6575-6580. doi: 10.1073/pnas.1620095114. Epub 2017 Jun 6.
Parasites can be a major cause of natural selection on hosts, which consequently evolve a variety of strategies to avoid, eliminate, or tolerate infection. When ecologically similar host populations present disparate infection loads, this natural variation can reveal immunological strategies underlying adaptation to infection and population divergence. For instance, the tapeworm persistently infects 0-80% of threespine stickleback () in lakes on Vancouver Island. To test whether these heterogeneous infection rates result from evolved differences in immunity, we experimentally exposed laboratory-reared fish from ecologically similar high-infection and no-infection populations to controlled doses of We observed heritable between-population differences in several immune traits: Fish from the naturally uninfected population initiated a stronger granulocyte response to infection, and their granulocytes constitutively generate threefold more reactive oxygen species in cell culture. Despite these immunological differences, was equally successful at establishing initial infections in both host populations. However, the no-infection fish dramatically suppressed tapeworm growth relative to high-infection fish, and parasite size was intermediate in F1 hybrid hosts. Our results show that stickleback recently evolved heritable variation in their capacity to suppress helminth growth by two orders of magnitude. Data from many natural populations indicate that growth suppression is widespread but not universal and, when present, is associated with reduced infection prevalence. Host suppression of helminth somatic growth may be an important immune strategy that aids in parasite clearance or in mitigating the fitness costs of persistent infection.
寄生虫可能是宿主自然选择的主要原因,宿主随之进化出多种策略来避免、消除或耐受感染。当生态相似的宿主群体呈现出不同的感染负担时,这种自然变异可以揭示出适应感染和种群分歧的免疫策略。例如,绦虫会持续感染温哥华岛湖泊中 0-80%的三刺鱼(Gasterosteus aculeatus)。为了测试这些不均匀的感染率是否是由于免疫进化差异导致的,我们实验性地将来自生态相似的高感染和无感染种群的实验室养殖鱼暴露于受控剂量的中。我们观察到几种免疫特征在种群间具有可遗传的差异:来自自然未感染种群的鱼对感染的粒细胞反应更强烈,它们的粒细胞在细胞培养中产生的活性氧物质增加了三倍。尽管存在这些免疫差异,在两个宿主种群中,都能成功地建立初始感染。然而,与高感染鱼相比,无感染鱼对绦虫的生长有显著的抑制作用,而 F1 杂交宿主中的寄生虫大小则处于中间水平。我们的研究结果表明,三刺鱼在抑制寄生虫生长的能力方面最近发生了可遗传的变异,其抑制幅度达到了两个数量级。来自许多自然种群的数据表明,生长抑制是普遍存在的,但并非普遍存在,而且当存在时,与感染率降低有关。宿主对寄生虫体生长的抑制可能是一种重要的免疫策略,有助于清除寄生虫或减轻持续感染的适应代价。