Suppr超能文献

适定的具有可压缩性和()流变学的颗粒流连续介质方程。 注:原文中“() -rheology”括号部分内容缺失,以上译文按现有内容翻译。

Well-posed continuum equations for granular flow with compressibility and ()-rheology.

作者信息

Barker T, Schaeffer D G, Shearer M, Gray J M N T

机构信息

School of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

Mathematics Department, Duke University, Box 90320, Durham, NC 27708-0320, USA.

出版信息

Proc Math Phys Eng Sci. 2017 May;473(2201):20160846. doi: 10.1098/rspa.2016.0846. Epub 2017 May 3.

Abstract

Continuum modelling of granular flow has been plagued with the issue of ill-posed dynamic equations for a long time. Equations for incompressible, two-dimensional flow based on the Coulomb friction law are ill-posed regardless of the deformation, whereas the rate-dependent ()-rheology is ill-posed when the non-dimensional inertial number is too high or too low. Here, incorporating ideas from critical-state soil mechanics, we derive conditions for well-posedness of partial differential equations that combine compressibility with -dependent rheology. When the -dependence comes from a specific friction coefficient (), our results show that, with compressibility, the equations are well-posed for all deformation rates provided that () satisfies certain minimal, physically natural, inequalities.

摘要

颗粒流的连续介质建模长期以来一直受到不适定动力学方程问题的困扰。基于库仑摩擦定律的不可压缩二维流方程,无论变形情况如何都是不适定的;而当无量纲惯性数过高或过低时,速率相关的()流变学也是不适定的。在此,结合临界状态土力学的思想,我们推导了将可压缩性与依赖于()的流变学相结合的偏微分方程的适定性条件。当对()的依赖来自特定摩擦系数时,我们的结果表明,考虑可压缩性时,只要()满足某些最小的、符合物理常理的不等式,方程对于所有变形速率都是适定的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/da04/5454347/f149058a95c9/rspa20160846-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验