Suppr超能文献

手部生物力学的关键见解:人类抓握刚度可通过共同收缩与力解耦,并可从肌电图预测。

Key Insights into Hand Biomechanics: Human Grip Stiffness Can Be Decoupled from Force by Cocontraction and Predicted from Electromyography.

作者信息

Höppner Hannes, Große-Dunker Maximilian, Stillfried Georg, Bayer Justin, van der Smagt Patrick

机构信息

Bionics Lab, Institute of Robotics and Mechatronics, German Aerospace Center DLR e.V., Oberpfaffenhofen, Wessling, Germany.

Department of Informatics, Technische Universität München, Munich, Germany.

出版信息

Front Neurorobot. 2017 May 22;11:17. doi: 10.3389/fnbot.2017.00017. eCollection 2017.

Abstract

We investigate the relation between grip force and grip stiffness for the human hand with and without voluntary cocontraction. Apart from gaining biomechanical insight, this issue is particularly relevant for variable-stiffness robotic systems, which can independently control the two parameters, but for which no clear methods exist to design or efficiently exploit them. Subjects were asked in one task to produce different levels of force, and stiffness was measured. As expected, this task reveals a linear coupling between force and stiffness. In a second task, subjects were then asked to additionally decouple stiffness from force at these force levels by using cocontraction. We measured the electromyogram from relevant groups of muscles and analyzed the possibility to predict stiffness and force. Optical tracking was used for avoiding wrist movements. We found that subjects were able to decouple grip stiffness from force when using cocontraction on average by about 20% of the maximum measured stiffness over all force levels, while this ability increased with the applied force. This result contradicts the force-stiffness behavior of most variable-stiffness actuators. Moreover, we found the thumb to be on average twice as stiff as the index finger and discovered that intrinsic hand muscles predominate our prediction of stiffness, but not of force. EMG activity and grip force allowed to explain 72 ± 12% of the measured variance in stiffness by simple linear regression, while only 33 ± 18% variance in force. Conclusively the high signal-to-noise ratio and the high correlation to stiffness of these muscles allow for a robust and reliable regression of stiffness, which can be used to continuously teleoperate compliance of modern robotic hands.

摘要

我们研究了人类手部在有或没有自主协同收缩情况下握力与握力刚度之间的关系。除了获得生物力学方面的见解外,这个问题对于可变刚度机器人系统尤为重要,这类系统可以独立控制这两个参数,但目前尚无明确的方法来设计或有效利用它们。在一项任务中,要求受试者产生不同水平的力,并测量刚度。正如预期的那样,这项任务揭示了力与刚度之间的线性耦合关系。在第二项任务中,要求受试者通过协同收缩在这些力水平上进一步使刚度与力解耦。我们测量了相关肌肉群的肌电图,并分析了预测刚度和力的可能性。使用光学跟踪来避免手腕运动。我们发现,受试者在使用协同收缩时,平均能够在所有力水平上使握力刚度与力解耦,解耦程度约为最大测量刚度的20%,而且这种能力会随着所施加的力而增强。这一结果与大多数可变刚度执行器的力-刚度行为相矛盾。此外,我们发现拇指的平均刚度是食指的两倍,并且发现手部固有肌肉在我们对刚度的预测中占主导地位,但在对力的预测中并非如此。肌电图活动和握力通过简单线性回归能够解释所测量刚度方差的72±12%,而在力方面仅能解释33±18%的方差。总之,这些肌肉的高信噪比以及与刚度的高相关性使得能够对刚度进行稳健可靠的回归分析,这可用于对现代机器人手的柔顺性进行连续遥操作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4f2a/5438998/496c0f5e6586/fnbot-11-00017-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验