铁(II)催化的富铁有机淡水絮体中铁原子交换和矿物变化:铁同位素示踪研究。

Iron(II)-Catalyzed Iron Atom Exchange and Mineralogical Changes in Iron-rich Organic Freshwater Flocs: An Iron Isotope Tracer Study.

机构信息

Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, CHN, ETH Zurich , Universitätstrasse 16, CH-8092 Zurich, Switzerland.

Geomicrobiology Group, Centre for Applied Geosciences (ZAG), University of Tübingen , Sigwartstrasse 10, D-72076, Tübingen, Germany.

出版信息

Environ Sci Technol. 2017 Jun 20;51(12):6897-6907. doi: 10.1021/acs.est.7b01495. Epub 2017 Jun 7.

Abstract

In freshwater wetlands, organic flocs are often found enriched in trace metal(loid)s associated with poorly crystalline Fe(III)-(oxyhydr)oxides. Under reducing conditions, flocs may become exposed to aqueous Fe(II), triggering Fe(II)-catalyzed mineral transformations and trace metal(loid) release. In this study, pure ferrihydrite, a synthetic ferrihydrite-polygalacturonic acid coprecipitate (16.7 wt % C), and As- (1280 and 1230 mg/kg) and organic matter (OM)-rich (18.1 and 21.8 wt % C) freshwater flocs dominated by ferrihydrite and nanocrystalline lepidocrocite were reacted with an isotopically enriched Fe(II) solution (0.1 or 1.0 mM Fe(II)) at pH 5.5 and 7. Using a combination of wet chemistry, Fe isotope analysis, X-ray absorption spectroscopy (XAS), Fe Mössbauer spectroscopy and X-ray diffraction, we followed the Fe atom exchange kinetics and secondary mineral formation over 1 week. When reacted with Fe(II) at pH 7, pure ferrihydrite exhibited rapid Fe atom exchange at both Fe(II) concentrations, reaching 76 and 89% atom exchange in experiments with 0.1 and 1 mM Fe(II), respectively. XAS data revealed that it transformed into goethite (21%) at the lower Fe(II) concentration and into lepidocrocite (73%) and goethite (27%) at the higher Fe(II) concentration. Despite smaller Fe mineral particles in the coprecipitate and flocs as compared to pure ferrihydrite (inferred from Mössbauer-derived blocking temperatures), these samples showed reduced Fe atom exchange (9-30% at pH 7) and inhibited secondary mineral formation. No release of As was recorded for Fe(II)-reacted flocs. Our findings indicate that carbohydrate-rich OM in flocs stabilizes poorly crystalline Fe minerals against Fe(II)-catalyzed transformation by surface-site blockage and/or organic Fe(II) complexation. This hinders the extent of Fe atom exchange at mineral surfaces and secondary mineral formation, which may consequently impair Fe(II)-activated trace metal(loid) release. Thus, under short-term Fe(III)-reducing conditions facilitating the fast attainment of solid-solution equilibria (e.g., in stagnant waters), Fe-rich freshwater flocs are expected to remain an effective sink for trace elements.

摘要

在淡水湿地中,有机絮体通常富含与非晶态 Fe(III)-(oxyhydr)oxides 相关的痕量金属。在还原条件下,絮体可能会暴露于水合的 Fe(II)中,引发 Fe(II)催化的矿物转化和痕量金属释放。在这项研究中,纯水铁矿、合成水铁矿-半乳糖醛酸共沉淀物(16.7wt% C)以及富砷(1280 和 1230mg/kg)和富有机质(18.1 和 21.8wt% C)的淡水絮体,其主要成分为水铁矿和纳米晶纤铁矿,与同位素富集的 Fe(II)溶液(0.1 或 1.0mM Fe(II))在 pH5.5 和 7 下反应。通过使用湿法化学、Fe 同位素分析、X 射线吸收光谱(XAS)、Fe Mössbauer 光谱和 X 射线衍射,我们在 1 周内跟踪了 Fe 原子交换动力学和次生矿物的形成。当在 pH7 下与 Fe(II)反应时,纯水铁矿在两种 Fe(II)浓度下均表现出快速的 Fe 原子交换,在 0.1mM 和 1mMFe(II)的实验中,分别达到 76%和 89%的原子交换。XAS 数据表明,它在较低的 Fe(II)浓度下转化为针铁矿(21%),在较高的 Fe(II)浓度下转化为纤铁矿(73%)和针铁矿(27%)。尽管与纯水铁矿相比,共沉淀物和絮体中的 Fe 矿物颗粒较小(根据 Mössbauer 推导的阻塞温度推断),但这些样品的 Fe 原子交换减少(pH7 时为 9-30%),并且抑制了次生矿物的形成。未记录到 Fe(II)反应的絮体中释放 As。我们的发现表明,絮体中的碳水化合物丰富的 OM 通过表面位阻和/或有机 Fe(II)络合来稳定非晶态 Fe 矿物,防止其被 Fe(II)催化转化。这阻碍了矿物表面的 Fe 原子交换和次生矿物的形成,这可能会进而损害 Fe(II)激活的痕量金属释放。因此,在促进快速达到固溶平衡的短期 Fe(III)还原条件下(例如,在停滞的水中),富 Fe 的淡水絮体预计将仍然是痕量元素的有效汇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索