School of Earth System Science, Tianjin University, Tianjin 300072, China.
Department of Crop and Soil Sciences, University of Georgia, Athens, Georgia 30602, United States.
Environ Sci Technol. 2023 Jul 25;57(29):10696-10707. doi: 10.1021/acs.est.3c01876. Epub 2023 Jul 14.
Despite substantial experimental evidence of electron transfer, atom exchange, and mineralogical transformation during the reaction of Fe(II) with synthetic Fe(III) minerals, these processes are rarely investigated in natural soils. Here, we used an enriched Fe isotope approach and Mössbauer spectroscopy to evaluate how soil organic matter (OM) influences Fe(II)/Fe(III) electron transfer and atom exchange in surface soils collected from Luquillo and Calhoun Experimental Forests and how this reaction might affect Fe mineral composition. Following the reaction of Fe-enriched Fe(II) with soils for 33 days, Mössbauer spectra demonstrated marked electron transfer between sorbed Fe(II) and the underlying Fe(III) oxides in soils. Comparing the untreated and OM-removed soils indicates that soil OM largely attenuated Fe(II)/Fe(III) electron transfer in goethite, whereas electron transfer to ferrihydrite was unaffected. Soil OM also reduced the extent of Fe atom exchange. Following reaction with Fe(II) for 33 days, no measurable mineralogical changes were found for the Calhoun soils enriched with high-crystallinity goethite, while Fe(II) did drive an increase in Fe oxide crystallinity in OM-removed LCZO soils having low-crystallinity ferrihydrite and goethite. However, the presence of soil OM largely inhibited Fe(II)-catalyzed increases in Fe mineral crystallinity in the LCZO soil. Fe atom exchange appears to be commonplace in soils exposed to anoxic conditions, but its resulting Fe(II)-induced recrystallization and mineral transformation depend strongly on soil OM content and the existing soil Fe phases.
尽管有大量实验证据表明铁(II)与合成铁(III)矿物反应过程中存在电子转移、原子交换和矿物转化,但这些过程在天然土壤中很少被研究。在这里,我们使用富集铁同位素方法和穆斯堡尔光谱法来评估土壤有机质(OM)如何影响表面土壤中 Fe(II)/Fe(III)电子转移和原子交换,这些反应如何影响 Fe 矿物组成。在富铁(II)与土壤反应 33 天后,穆斯堡尔光谱表明,吸附态 Fe(II)与土壤中潜在的 Fe(III)氧化物之间发生了明显的电子转移。比较未处理和去除 OM 的土壤表明,土壤 OM 极大地削弱了针铁矿中 Fe(II)/Fe(III)的电子转移,而对水铁矿的电子转移没有影响。土壤 OM 还减少了 Fe 原子交换的程度。在与 Fe(II)反应 33 天后,富含高结晶度针铁矿的 Calhoun 土壤没有发现可测量的矿物变化,而在 OM 去除的 LCZO 土壤中,Fe(II)确实导致 Fe 氧化物结晶度增加,这些土壤中存在低结晶度的水铁矿和针铁矿。然而,土壤 OM 的存在极大地抑制了 LCZO 土壤中 Fe(II)催化的 Fe 矿物结晶度的增加。Fe 原子交换似乎在暴露于缺氧条件的土壤中很常见,但由此产生的 Fe(II)诱导的再结晶和矿物转化强烈依赖于土壤 OM 含量和现有的土壤 Fe 相。