新兴研究者系列:与葡萄糖醛酸共沉淀限制了缺氧土壤中针铁矿的还原溶解和转化。
Emerging investigator series: Coprecipitation with glucuronic acid limits reductive dissolution and transformation of ferrihydrite in an anoxic soil.
机构信息
Environmental Chemistry Group, Institute of Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, CH-2000, Neuchâtel, Switzerland.
Soil Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics, Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, CHN, CH-8092 Zurich, Switzerland.
出版信息
Environ Sci Process Impacts. 2024 Sep 18;26(9):1489-1502. doi: 10.1039/d4em00238e.
Ferrihydrite, a poorly crystalline Fe(III)-oxyhydroxide, is abundant in soils and is often found associated with organic matter. Model studies consistently show that in the presence of aqueous Fe(II), organic carbon (OC)-associated ferrihydrite undergoes less transformation than OC-free ferrihydrite. Yet, these findings contrast microbial reductive dissolution studies in which the OC promotes the reductive dissolution of Fe(III) in ferrihydrite and leads to the release of associated OC. To shed light on these complex processes, we quantified the extent of reductive dissolution and transformation of native Fe minerals and added ferrihydrite in anoxic soil incubations where pure Fe-ferrihydrite (Fh), pure Fe-ferrihydrite plus dissolved glucuronic acid (Fh + GluC), a Fe-ferrihydrite-C-glucuronic acid coprecipitate (FhGluC), or only dissolved glucuronic acid (GluC) were added. By tracking the transformation of the Fe-ferrihydrite in the solid phase with Mössbauer spectroscopy together with analysis of the iron isotope composition of the aqueous phase and chemical extractions with inductively coupled plasma-mass spectrometry, we show that the pure Fe-ferrihydrite underwent more reductive dissolution and transformation than the coprecipitated Fe-ferrihydrite when identical amounts of glucuronic acid were provided (Fh + GluCFhGluC treatments). In the absence of glucuronic acid, the pure Fe-ferrihydrite underwent the least reductive dissolution and transformation (Fh). Comparing all treatments, the overall extent of Fe(III) reduction, including the added and native Fe minerals, determined with X-ray absorption spectroscopy, was highest in the Fh + GluC treatment. Collectively, our results suggest that the limited bioavailability of the coprecipitated OC restricts not only the reductive dissolution of the coprecipitated mineral, but it also limits the enhanced reduction of native soil Fe(III) minerals.
水铁矿是一种结晶程度较差的三价铁氢氧化物,在土壤中含量丰富,常与有机质共存。模型研究一致表明,在含有水合二价铁的情况下,与有机碳(OC)结合的水铁矿的转化程度低于无 OC 的水铁矿。然而,这些发现与微生物还原溶解研究形成了鲜明对比,后者表明 OC 促进了水铁矿中三价铁的还原溶解,并导致与之结合的 OC 释放。为了阐明这些复杂的过程,我们定量评估了缺氧土壤培养中天然铁矿物和添加水铁矿的还原溶解和转化程度,在这些培养中添加了纯 Fe-水铁矿(Fh)、纯 Fe-水铁矿加溶解的葡萄糖醛酸(Fh+GluC)、Fe-水铁矿-C-葡萄糖醛酸共沉淀(FhGluC)或仅添加溶解的葡萄糖醛酸(GluC)。通过与穆斯堡尔光谱一起跟踪固相中 Fe-水铁矿的转化,并分析水相的铁同位素组成和电感耦合等离子体质谱化学提取,我们表明,当提供等量的葡萄糖醛酸时,纯 Fe-水铁矿的还原溶解和转化程度高于共沉淀的 Fe-水铁矿(Fh+GluC>FhGluC 处理)。在没有葡萄糖醛酸的情况下,纯 Fe-水铁矿的还原溶解和转化程度最小(Fh)。比较所有处理,用 X 射线吸收光谱法确定的包括添加和天然铁矿物在内的总三价铁还原程度在 Fh+GluC 处理中最高。总的来说,我们的结果表明,共沉淀 OC 的生物利用度有限不仅限制了共沉淀矿物的还原溶解,而且还限制了对天然土壤三价铁矿物的增强还原。