Callaway Edward M.
The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA, 92037, USA
The diversity and the specialized connectivity and function of inhibitory cortical neurons have been the focus of intense research for many decades (Fishell and Rudy, Ann Rev Neurosci 34:535–567, 2011). Until recently, technical limitations have restricted the power of experiments that could be conducted in vivo. Nevertheless, in vitro studies identified dozens of distinct cortical inhibitory neuron types, each with unique chemical properties, intrinsic firing properties and connection specificity. And at the same time, post-mortem studies from human patients have demonstrated defects of inhibitory circuit markers in diseases such as schizophrenia (Curley and Lewis, J Physiol 590:715–724, 2012; Stan and Lewis, Curr Pharm Biotech 13:1557–1562, 2012; Lewis, Curr Opin Neurobiol 26:22–26, 2014). Together, these observations have led to the hypothesis that distinct types of inhibitory neurons play distinct functional roles in the dynamic regulation of brain states and in the context-dependent extraction of sensory information, cognitive function, and behavioral output—functions thought to be disrupted in disorders such as schizophrenia and autism. Despite the wealth of evidence in support of this hypothesis, tools have only recently emerged to allow detailed studies of neural circuit mechanisms underlying in vivo dynamics and to implicate specific inhibitory cell types and connections in specific functions (Luo et al., Neuron 57:634–660, 2008). Now, rather than broadly surveying inhibitory neuron properties and connections in vitro, studies have begun to focus more deeply on the in vivo contributions of those inhibitory cell types that are genetically accessible and can therefore be interrogated with modern genetic tools for manipulating and monitoring activity of specific cell types. Mouse lines that express Cre-recombinase selectively in three major, non-overlapping groups of inhibitory cortical neurons—Parvalbumin-expressing (PV), somatostatin-expressing (SST), and vasoactive intestinal peptide-expressing (VIP; Lee et al., J Neurosci 30:16796–16808, 2010; Xu et al. J Comp Neurol 518:389–404, 2010; Rudy et al., J Comp Neurol 518:389–404, 2011; Taniguchi et al., J Comp Neurol 518:389–404, 2011)—have allowed detailed studies of the connectivity and in vivo functional roles of these cell groups. Such studies have implicated PV inhibitory neurons in gain control (Atallah et al., Neuron 73:159–170, 2012; Lee et al., Nature 488:379–383, 2012; Nienborg et al., J Neurosci 33:11145–11154, 2013), SST interneurons in the suppression of lateral and feedback (top-down) interactions (Adesnik and Scanziani, Nature 464:1155–1160, 2010; Nienborg et al., J Neurosci 33:11145–11154, 2013), and VIP interneurons in the dynamic regulation of SST cells under the control of brain state-dependent neuromodulators (Kawaguchi, J Neurophysiol 78:1743–1747, 1997; Alitto and Dan, Front Syst Neurosci 6:79, 2012; Lee et al., Nat Neurosci 16:1662–1670, 2013; Pi et al., Nature 503:521–524, 2013; Polack et al., Nat Neurosci 16:1331–1339, 2013; Fu et al., Cell 156:1139–1152, 2014; Stryker, Cold Spring Harbor Symp Quant Biol 79:1–9, 2014; Zhang et al., Science 345:660–665, 2014).
几十年来,抑制性皮层神经元的多样性、特殊的连接性和功能一直是深入研究的焦点(Fishell和Rudy,《神经科学年度评论》34:535 - 567,2011)。直到最近,技术限制仍制约着体内实验的开展。尽管如此,体外研究已鉴定出数十种不同的皮层抑制性神经元类型,每种类型都具有独特的化学特性、内在放电特性和连接特异性。与此同时,对人类患者的尸检研究表明,在精神分裂症等疾病中抑制性回路标记物存在缺陷(Curley和Lewis,《生理学杂志》590:715 - 724,2012;Stan和Lewis,《当代药物生物技术》13:1557 - 1562,2012;Lewis,《当代神经生物学观点》26:22 - 26,2014)。综合这些观察结果,人们提出了这样的假说:不同类型的抑制性神经元在脑状态的动态调节以及感觉信息、认知功能和行为输出的情境依赖性提取中发挥着不同的功能作用——这些功能被认为在精神分裂症和自闭症等疾病中受到破坏。尽管有大量证据支持这一假说,但直到最近才出现了一些工具,能够对体内动态背后的神经回路机制进行详细研究,并揭示特定抑制性细胞类型和连接在特定功能中的作用(Luo等人,《神经元》57:634 - 660,2008)。现在,研究不再广泛地在体外研究抑制性神经元的特性和连接,而是开始更深入地关注那些在基因上可及的抑制性细胞类型在体内的作用,因此可以用现代基因工具对其进行操作和监测特定细胞类型的活动。在三组主要的、不重叠的抑制性皮层神经元中选择性表达Cre重组酶的小鼠品系——表达小白蛋白的(PV)、表达生长抑素的(SST)和表达血管活性肠肽的(VIP;Lee等人,《神经科学杂志》30:16796 - 16808,2010;Xu等人,《比较神经学杂志》518:389 - 404,2010;Rudy等人,《比较神经学杂志》518:389 - 404,2011;Taniguchi等人,《比较神经学杂志》518:389 - 404,2011)——使得对这些细胞群体的连接性和体内功能作用的详细研究成为可能。此类研究表明,PV抑制性神经元参与增益控制(Atallah等人,《神经元》73:159 - 170,2012;Lee等人,《自然》488:379 - 383,2012;Nienborg等人,《神经科学杂志》33:11145 - 11154,2013),SST中间神经元参与抑制侧向和反馈(自上而下)相互作用(Adesnik和Scanziani,《自然》464:1155 - 1160,2010;Nienborg等人,《神经科学杂志》33:11145 - 11154,2013),而VIP中间神经元在脑状态依赖性神经调质的控制下对SST细胞进行动态调节(Kawaguchi,《神经生理学杂志》78:1743 - 1747,1997;Alitto和Dan,《系统神经科学前沿》6:79,2012;Lee等人,《自然神经科学》16:1662 - 1670,2013;Pi等人,《自然》503:521 - 524,2013;Polack等人,《自然神经科学》16:1331 - 1339,2013;Fu等人,《细胞》156:1139 - 1152,2014;Stryker,《冷泉港定量生物学研讨会》79:1 - 9,2014;Zhang等人,《科学》345:660 - 665,2014)。