Suppr超能文献

微生物视紫红质光遗传学工具:在行为中用于突触传递和神经网络活动分析的应用

Microbial Rhodopsin Optogenetic Tools: Application for Analyses of Synaptic Transmission and of Neuronal Network Activity in Behavior.

作者信息

Glock Caspar, Nagpal Jatin, Gottschalk Alexander

机构信息

Buchmann Institute for Molecular Life Sciences, Goethe University, Max von Laue Strasse 15, 60438, Frankfurt, Germany.

Institute of Biochemistry, Goethe University, Max von Laue Strasse 9, 60438, Frankfurt, Germany.

出版信息

Methods Mol Biol. 2015;1327:87-103. doi: 10.1007/978-1-4939-2842-2_8.

Abstract

Optogenetics was introduced as a new technology in the neurosciences about a decade ago (Zemelman et al., Neuron 33:15-22, 2002; Boyden et al., Nat Neurosci 8:1263-1268, 2005; Nagel et al., Curr Biol 15:2279-2284, 2005; Zemelman et al., Proc Natl Acad Sci USA 100:1352-1357, 2003). It combines optics, genetics, and bioengineering to render neurons sensitive to light, in order to achieve a precise, exogenous, and noninvasive control of membrane potential, intracellular signaling, network activity, or behavior (Rein and Deussing, Mol Genet Genomics 287:95-109, 2012; Yizhar et al., Neuron 71:9-34, 2011). As C. elegans is transparent, genetically amenable, has a small nervous system mapped with synapse resolution, and exhibits a rich behavioral repertoire, it is especially open to optogenetic methods (White et al., Philos Trans R Soc Lond B Biol Sci 314:1-340, 1986; De Bono et al., Optogenetic actuation, inhibition, modulation and readout for neuronal networks generating behavior in the nematode Caenorhabditis elegans, In: Hegemann P, Sigrist SJ (eds) Optogenetics, De Gruyter, Berlin, 2013; Husson et al., Biol Cell 105:235-250, 2013; Xu and Kim, Nat Rev Genet 12:793-801, 2011). Optogenetics, by now an "exploding" field, comprises a repertoire of different tools ranging from transgenically expressed photo-sensor proteins (Boyden et al., Nat Neurosci 8:1263-1268, 2005; Nagel et al., Curr Biol 15:2279-2284, 2005) or cascades (Zemelman et al., Neuron 33:15-22, 2002) to chemical biology approaches, using photochromic ligands of endogenous channels (Szobota et al., Neuron 54:535-545, 2007). Here, we will focus only on optogenetics utilizing microbial rhodopsins, as these are most easily and most widely applied in C. elegans. For other optogenetic tools, for example the photoactivated adenylyl cyclases (PACs, that drive neuronal activity by increasing synaptic vesicle priming, thus exaggerating rather than overriding the intrinsic activity of a neuron, as occurs with rhodopsins), we refer to other literature (Weissenberger et al., J Neurochem 116:616-625, 2011; Steuer Costa et al., Photoactivated adenylyl cyclases as optogenetic modulators of neuronal activity, In: Cambridge S (ed) Photswitching proteins, Springer, New York, 2014). In this chapter, we will give an overview of rhodopsin-based optogenetic tools, their properties and function, as well as their combination with genetically encoded indicators of neuronal activity. As there is not "the" single optogenetic experiment we could describe here, we will focus more on general concepts and "dos and don'ts" when designing an optogenetic experiment. We will also give some guidelines on which hardware to use, and then describe a typical example of an optogenetic experiment to analyze the function of the neuromuscular junction, and another application, which is Ca(2+) imaging in body wall muscle, with upstream neuronal excitation using optogenetic stimulation. To obtain a more general overview of optogenetics and optogenetic tools, we refer the reader to an extensive collection of review articles, and in particular to volume 1148 of this book series, "Photoswitching Proteins."

摘要

大约十年前,光遗传学作为神经科学领域的一项新技术被引入(泽梅尔曼等人,《神经元》33:15 - 22,2002年;博伊登等人,《自然神经科学》8:1263 - 1268,2005年;纳格尔等人,《当代生物学》15:2279 - 2284,2005年;泽梅尔曼等人,《美国国家科学院院刊》100:1352 - 1357,2003年)。它将光学、遗传学和生物工程学相结合,使神经元对光敏感,从而实现对膜电位、细胞内信号传导、网络活动或行为的精确、外源且非侵入性的控制(赖因和德辛斯,《分子遗传学与基因组学》287:95 - 109,2012年;伊扎尔等人,《神经元》71:9 - 34,2011年)。由于秀丽隐杆线虫是透明的,易于进行基因操作,拥有一个已以突触分辨率绘制图谱的小型神经系统,并且展现出丰富的行为模式,因此它特别适合光遗传学方法(怀特等人,《英国皇家学会哲学学报B辑:生物科学》314:1 - 340,1986年;德博诺等人,《用于线虫秀丽隐杆线虫中产生行为的神经网络的光遗传学激活、抑制、调制和读出》,载于:黑格曼P、西格里斯蒂SJ(编)《光遗传学》,德古意特出版社,柏林,2013年;胡森等人,《生物细胞》105:235 - 250,2013年;徐和金,《自然评论遗传学》12:793 - 801,2011年)。如今,光遗传学已成为一个“蓬勃发展”的领域,它包含一系列不同的工具,从转基因表达的光传感器蛋白(博伊登等人,《自然神经科学》8:1263 - 1268,2005年;纳格尔等人,《当代生物学》15:2279 - 2284,2005年)或级联反应(泽梅尔曼等人,《神经元》33:15 - 22,2002年)到化学生物学方法,即使用内源性通道的光致变色配体(索博塔等人,《神经元》54:535 - 545,2007年)。在此,我们将仅聚焦于利用微生物视紫红质的光遗传学,因为这些在秀丽隐杆线虫中最容易且应用最广泛。对于其他光遗传学工具,例如光激活腺苷酸环化酶(PACs,它通过增加突触小泡引发来驱动神经元活动,从而夸大而非像视紫红质那样凌驾于神经元的内在活动之上),我们请读者参考其他文献(魏森伯格等人,《神经化学杂志》116:616 - 625,2011年;施特尔·科斯塔等人,《光激活腺苷酸环化酶作为神经元活动的光遗传学调节剂》,载于:剑桥S(编)《光开关蛋白》,施普林格出版社,纽约,2014年)。在本章中,我们将概述基于视紫红质的光遗传学工具、它们的特性和功能,以及它们与神经元活动的基因编码指示剂的结合。由于这里没有一个我们可以描述的单一光遗传学实验,我们将更多地关注设计光遗传学实验时的一般概念和“注意事项”。我们还将给出关于使用何种硬件的一些指导方针,然后描述一个分析神经肌肉接头功能的光遗传学实验的典型示例,以及另一个应用,即利用光遗传学刺激对体壁肌肉进行Ca(2+)成像并进行上游神经元激发。为了更全面地了解光遗传学和光遗传学工具,我们请读者参考大量的综述文章,特别是本系列丛书第1148卷《光开关蛋白》。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验