Clemente-Perez Alexandra, Makinson Stefanie Ritter, Higashikubo Bryan, Brovarney Scott, Cho Frances S, Urry Alexander, Holden Stephanie S, Wimer Matthew, Dávid Csaba, Fenno Lief E, Acsády László, Deisseroth Karl, Paz Jeanne T
Neurosciences Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA.
Cell Rep. 2017 Jun 6;19(10):2130-2142. doi: 10.1016/j.celrep.2017.05.044.
Integrative brain functions depend on widely distributed, rhythmically coordinated computations. Through its long-ranging connections with cortex and most senses, the thalamus orchestrates the flow of cognitive and sensory information. Essential in this process, the nucleus reticularis thalami (nRT) gates different information streams through its extensive inhibition onto other thalamic nuclei, however, we lack an understanding of how different inhibitory neuron subpopulations in nRT function as gatekeepers. We dissociated the connectivity, physiology, and circuit functions of neurons within rodent nRT, based on parvalbumin (PV) and somatostatin (SOM) expression, and validated the existence of such populations in human nRT. We found that PV, but not SOM, cells are rhythmogenic, and that PV and SOM neurons are connected to and modulate distinct thalamocortical circuits. Notably, PV, but not SOM, neurons modulate somatosensory behavior and disrupt seizures. These results provide a conceptual framework for how nRT may gate incoming information to modulate brain-wide rhythms.
整合性脑功能依赖于广泛分布的、节律性协调的计算。丘脑通过其与皮质和大多数感觉系统的长程连接,协调认知和感觉信息流。在此过程中至关重要的是,丘脑网状核(nRT)通过对其他丘脑核团的广泛抑制作用来控制不同的信息流,然而,我们尚不清楚nRT中不同的抑制性神经元亚群如何作为守门人发挥作用。我们基于小白蛋白(PV)和生长抑素(SOM)的表达,解析了啮齿动物nRT内神经元的连接性、生理学和环路功能,并验证了人类nRT中此类细胞群的存在。我们发现,PV细胞而非SOM细胞具有节律性,并且PV和SOM神经元连接并调节不同的丘脑皮质环路。值得注意的是,PV神经元而非SOM神经元调节躯体感觉行为并扰乱癫痫发作。这些结果为nRT如何控制传入信息以调节全脑节律提供了一个概念框架。