Suppr超能文献

一组从贻贝足部腺体转录组分析中鉴定出的新型粘附蛋白。

A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands.

作者信息

DeMartini Daniel G, Errico John M, Sjoestroem Sebastian, Fenster April, Waite J Herbert

机构信息

Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-6150, USA

Marine Science Institute, University of California-Santa Barbara, Santa Barbara, CA 93106-6150, USA.

出版信息

J R Soc Interface. 2017 Jun;14(131). doi: 10.1098/rsif.2017.0151.

Abstract

The adaptive attachment of marine mussels to a wide range of substrates in a high-energy, saline environment has been explored for decades and is a significant driver of bioinspired wet adhesion research. Mussel attachment relies on a fibrous holdfast known as the byssus, which is made by a specialized appendage called the foot. Multiple adhesive and structural proteins are rapidly synthesized, secreted and moulded by the foot into holdfast threads. About 10 well-characterized proteins, namely the mussel foot proteins (Mfps), the preCols and the thread matrix proteins, are reported as representing the bulk of these structures. To explore how robust this proposition is, we sequenced the transcriptome of the glandular tissues that produce and secrete the various holdfast components using next-generation sequencing methods. Surprisingly, we found around 15 highly expressed genes that have not previously been characterized, but bear key similarities to the previously defined mussel foot proteins, suggesting additional contribution to byssal function. We verified the validity of these transcripts by polymerase chain reaction, cloning and Sanger sequencing as well as confirming their presence as proteins in the byssus. These newly identified proteins greatly expand the palette of mussel holdfast biochemistry and provide new targets for investigation into bioinspired wet adhesion.

摘要

几十年来,人们一直在探索海洋贻贝在高能、含盐环境中对多种基质的适应性附着,这是仿生湿粘附研究的一个重要驱动力。贻贝的附着依赖于一种称为足丝的纤维状固着物,它由一种叫做足部的特殊附属器官制造。足部能快速合成、分泌多种粘附蛋白和结构蛋白,并将它们塑造成固着丝。据报道,大约有10种特征明确的蛋白质,即贻贝足部蛋白(Mfps)、前胶原和丝基质蛋白,构成了这些结构的主要部分。为了探究这一观点的可靠性,我们使用下一代测序方法对产生和分泌各种固着成分的腺组织的转录组进行了测序。令人惊讶的是,我们发现了大约15个以前未被表征的高表达基因,但它们与先前定义的贻贝足部蛋白有关键的相似性,这表明它们对足丝功能有额外贡献。我们通过聚合酶链反应、克隆和桑格测序验证了这些转录本的有效性,并证实它们作为蛋白质存在于足丝中。这些新发现的蛋白质极大地扩展了贻贝固着生物化学的范畴,并为仿生湿粘附研究提供了新的研究靶点。

相似文献

1
A cohort of new adhesive proteins identified from transcriptomic analysis of mussel foot glands.
J R Soc Interface. 2017 Jun;14(131). doi: 10.1098/rsif.2017.0151.
2
Novel proteins identified in the insoluble byssal matrix of the freshwater zebra mussel.
Mar Biotechnol (NY). 2014 Apr;16(2):144-55. doi: 10.1007/s10126-013-9537-9. Epub 2013 Sep 24.
3
Near-future levels of ocean temperature weaken the byssus production and performance of the mussel Mytilus coruscus.
Sci Total Environ. 2020 Sep 1;733:139347. doi: 10.1016/j.scitotenv.2020.139347. Epub 2020 May 11.
4
Zebra mussel adhesion: structure of the byssal adhesive apparatus in the freshwater mussel, Dreissena polymorpha.
J Struct Biol. 2012 Mar;177(3):613-20. doi: 10.1016/j.jsb.2012.01.011. Epub 2012 Jan 30.
5
Immunolocalization of Dpfp1, a byssal protein of the zebra mussel Dreissena polymorpha.
J Exp Biol. 2000 Oct;203(Pt 20):3065-76. doi: 10.1242/jeb.203.20.3065.
6
In-depth proteomic analysis of the byssus from marine mussel Mytilus coruscus.
J Proteomics. 2016 Jul 20;144:87-98. doi: 10.1016/j.jprot.2016.06.014. Epub 2016 Jun 15.
7
Marine Bioinspired Underwater Contact Adhesion.
Biomacromolecules. 2016 May 9;17(5):1869-74. doi: 10.1021/acs.biomac.6b00300. Epub 2016 Apr 13.
9
Genomics and Transcriptomics of the green mussel explain the durability of its byssus.
Sci Rep. 2021 Mar 16;11(1):5992. doi: 10.1038/s41598-021-84948-6.
10
Gene expression profiling during the byssogenesis of zebra mussel (Dreissena polymorpha).
Mol Genet Genomics. 2010 Apr;283(4):327-39. doi: 10.1007/s00438-010-0517-8. Epub 2010 Feb 11.

引用本文的文献

1
Development of a decellularized extracellular matrix-derived wet adhesive for sustained drug delivery and enhanced wound healing.
Mater Today Bio. 2025 Apr 5;32:101734. doi: 10.1016/j.mtbio.2025.101734. eCollection 2025 Jun.
2
Catechol redox maintenance in mussel adhesion.
Nat Rev Chem. 2025 Mar;9(3):159-172. doi: 10.1038/s41570-024-00673-4. Epub 2025 Jan 15.
3
Diversity and evolution of tyrosinase enzymes involved in the adhesive systems of mussels and tubeworms.
iScience. 2024 Nov 20;27(12):111443. doi: 10.1016/j.isci.2024.111443. eCollection 2024 Dec 20.
4
Molecular Crowding: The History and Development of a Scientific Paradigm.
Chem Rev. 2024 Mar 27;124(6):3186-3219. doi: 10.1021/acs.chemrev.3c00615. Epub 2024 Mar 11.
5
Glycoproteins Involved in Sea Urchin Temporary Adhesion.
Mar Drugs. 2023 Feb 24;21(3):145. doi: 10.3390/md21030145.
6
Recent advances in biomimetic hemostatic materials.
Mater Today Bio. 2023 Feb 24;19:100592. doi: 10.1016/j.mtbio.2023.100592. eCollection 2023 Apr.
7
Protein-Based Biological Materials: Molecular Design and Artificial Production.
Chem Rev. 2023 Mar 8;123(5):2049-2111. doi: 10.1021/acs.chemrev.2c00621. Epub 2023 Jan 24.
8
Hydrogen-bonds mediate liquid-liquid phase separation of mussel derived adhesive peptides.
Nat Commun. 2022 Oct 1;13(1):5771. doi: 10.1038/s41467-022-33545-w.
9
Decoding the byssus fabrication by spatiotemporal secretome analysis of scallop foot.
Comput Struct Biotechnol J. 2022 May 27;20:2713-2722. doi: 10.1016/j.csbj.2022.05.048. eCollection 2022.
10
Exploration of sea anemone-inspired high-performance biomaterials with enhanced antioxidant activity.
Bioact Mater. 2021 Sep 4;10:504-514. doi: 10.1016/j.bioactmat.2021.08.021. eCollection 2022 Apr.

本文引用的文献

3
Mussel adhesion - essential footwork.
J Exp Biol. 2017 Feb 15;220(Pt 4):517-530. doi: 10.1242/jeb.134056.
6
In-depth proteomic analysis of the byssus from marine mussel Mytilus coruscus.
J Proteomics. 2016 Jul 20;144:87-98. doi: 10.1016/j.jprot.2016.06.014. Epub 2016 Jun 15.
7
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update.
Nucleic Acids Res. 2016 Jul 8;44(W1):W3-W10. doi: 10.1093/nar/gkw343. Epub 2016 May 2.
8
Redox Capacity of an Extracellular Matrix Protein Associated with Adhesion in Mytilus californianus.
Biochemistry. 2016 Apr 5;55(13):2022-30. doi: 10.1021/acs.biochem.6b00044. Epub 2016 Mar 21.
9
The microscopic network structure of mussel (Mytilus) adhesive plaques.
J R Soc Interface. 2015 Dec 6;12(113):20150827. doi: 10.1098/rsif.2015.0827.
10
Mussel Coating Protein-Derived Complex Coacervates Mitigate Frictional Surface Damage.
ACS Biomater Sci Eng. 2015 Nov 9;1(11):1121-1128. doi: 10.1021/acsbiomaterials.5b00252. Epub 2015 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验