文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁场能够通过破坏内皮细胞-细胞连接来实现药物的控制释放。

Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions.

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA.

Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia 30332, USA.

出版信息

Nat Commun. 2017 Jun 8;8:15594. doi: 10.1038/ncomms15594.


DOI:10.1038/ncomms15594
PMID:28593939
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5472756/
Abstract

The vascular endothelium presents a major transport barrier to drug delivery by only allowing selective extravasation of solutes and small molecules. Therefore, enhancing drug transport across the endothelial barrier has to rely on leaky vessels arising from disease states such as pathological angiogenesis and inflammatory response. Here we show that the permeability of vascular endothelium can be increased using an external magnetic field to temporarily disrupt endothelial adherens junctions through internalized iron oxide nanoparticles, activating the paracellular transport pathway and facilitating the local extravasation of circulating substances. This approach provides a physically controlled drug delivery method harnessing the biology of endothelial adherens junction and opens a new avenue for drug delivery in a broad range of biomedical research and therapeutic applications.

摘要

血管内皮细胞对药物输送构成了主要的传输屏障,仅允许溶质和小分子的选择性渗出。因此,要想增强药物穿过内皮屏障的输送,就必须依赖于由病理血管生成和炎症反应等疾病状态引起的渗漏血管。在这里,我们展示了可以利用外部磁场通过内化的氧化铁纳米颗粒暂时破坏内皮细胞紧密连接,从而增加血管内皮的通透性,激活细胞旁转运途径,并促进循环物质的局部渗出。这种方法提供了一种物理控制的药物输送方法,利用了内皮细胞紧密连接的生物学特性,为广泛的生物医学研究和治疗应用中的药物输送开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/673f4dd7e308/ncomms15594-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/859f002642f2/ncomms15594-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/d1eb721c492d/ncomms15594-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/935ed45c9190/ncomms15594-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/10e0df81466b/ncomms15594-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/eb8699de9516/ncomms15594-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/673f4dd7e308/ncomms15594-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/859f002642f2/ncomms15594-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/d1eb721c492d/ncomms15594-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/935ed45c9190/ncomms15594-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/10e0df81466b/ncomms15594-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/eb8699de9516/ncomms15594-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aef6/5472756/673f4dd7e308/ncomms15594-f6.jpg

相似文献

[1]
Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions.

Nat Commun. 2017-6-8

[2]
Protein Interactions at Endothelial Junctions and Signaling Mechanisms Regulating Endothelial Permeability.

Circ Res. 2017-1-6

[3]
[Vascular endothelial Barrier Function].

Usp Fiziol Nauk. 2015

[4]
Selective targeting of angiogenic tumor vasculature by vascular endothelial-cadherin antibody inhibits tumor growth without affecting vascular permeability.

Cancer Res. 2002-5-1

[5]
Nanoagonist-mediated endothelial tight junction opening: A strategy for safely increasing brain drug delivery in mice.

J Cereb Blood Flow Metab. 2017-4

[6]
Transport across the endothelium: regulation of endothelial permeability.

Handb Exp Pharmacol. 2006

[7]
Stem cell factor is a potent endothelial permeability factor.

Arterioscler Thromb Vasc Biol. 2014-5-1

[8]
Role of endothelial cell-cell junctions in endothelial permeability.

Methods Mol Biol. 2011

[9]
Prevention of VEGF-mediated microvascular permeability by C-peptide in diabetic mice.

Cardiovasc Res. 2013-10-18

[10]
CMTM3 (CKLF-Like Marvel Transmembrane Domain 3) Mediates Angiogenesis by Regulating Cell Surface Availability of VE-Cadherin in Endothelial Adherens Junctions.

Arterioscler Thromb Vasc Biol. 2017-6

引用本文的文献

[1]
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

Bioact Mater. 2025-7-26

[2]
The blood-brain barriers: novel nanocarriers for central nervous system diseases.

J Nanobiotechnology. 2025-2-26

[3]
Advances in magnetic nanoparticles for molecular medicine.

Chem Commun (Camb). 2025-2-13

[4]
Magnetic Iron Oxide Nanoparticles Enhance Exosome Production by Upregulating Exosome Transport and Secretion Pathways.

ACS Appl Mater Interfaces. 2024-12-11

[5]
Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies.

Int J Nanomedicine. 2024

[6]
Characterization and antitumor effect of doxorubicin-loaded FeO-Au nanocomposite synthesized by electron beam evaporation for magnetic nanotheranostics.

RSC Adv. 2024-4-29

[7]
MRI-guided photothermal/photodynamic immune activation combined with PD-1 inhibitor for the multimodal combination therapy of melanoma and metastases.

Regen Biomater. 2024-3-14

[8]
Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme.

Am J Cancer Res. 2024-2-15

[9]
Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier.

ACS Nano. 2024-1-23

[10]
Advances in Brain Tumor Therapy Based on the Magnetic Nanoparticles.

Int J Nanomedicine. 2023

本文引用的文献

[1]
Drug and gene delivery across the blood-brain barrier with focused ultrasound.

J Control Release. 2015-12-10

[2]
Directing cell therapy to anatomic target sites in vivo with magnetic resonance targeting.

Nat Commun. 2015-8-18

[3]
F-actin-anchored focal adhesions distinguish endothelial phenotypes of human arteries and veins.

Arterioscler Thromb Vasc Biol. 2014-7-10

[4]
Structural responses of cells to intracellular magnetic force induced by superparamagnetic iron oxide nanoparticles.

Phys Chem Chem Phys. 2014-2-7

[5]
Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation.

Nanomedicine. 2013-7-19

[6]
The effect of lipid monolayer in-plane rigidity on in vivo microbubble circulation persistence.

Biomaterials. 2013-6-17

[7]
Magnetic targeting of human mesenchymal stem cells with internalized superparamagnetic iron oxide nanoparticles.

Small. 2013-6-13

[8]
Tiny grains give huge gains: nanocrystal-based signal amplification for biomolecule detection.

ACS Nano. 2013-5-13

[9]
Multifunctional nanoparticles for drug delivery and molecular imaging.

Annu Rev Biomed Eng. 2013-4-29

[10]
Spatiotemporal control of microtubule nucleation and assembly using magnetic nanoparticles.

Nat Nanotechnol. 2013-1-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索