Philippe Florian, Pelloux Jérôme, Rayon Catherine
EA3900-BIOPI, Biologie des Plantes et Innovation, Université de Picardie Jules Verne, 80039, Amiens, France.
BMC Genomics. 2017 Jun 8;18(1):456. doi: 10.1186/s12864-017-3833-0.
Pectins are plant cell wall polysaccharides that can be acetylated on C2 and/or C3 of galacturonic acid residues. The degree of acetylation of pectin can be modulated by pectin acetylesterase (EC 3.1.1.6, PAE). The function and structure of plant PAEs remain poorly understood and the role of the fine-tuning of pectin acetylation on cell wall properties has not yet been elucidated.
In the present study, a bioinformatic approach was used on 72 plant PAEs from 16 species among 611 plant PAEs available in plant genomic databases. An overview of plant PAE proteins, particularly Arabidopsis thaliana PAEs, based on phylogeny analysis, protein motif identification and modeled 3D structure is presented. A phylogenetic tree analysis using protein sequences clustered the plant PAEs into five clades. AtPAEs clustered in four clades in the plant kingdom PAE tree while they formed three clades when a phylogenetic tree was performed only on Arabidopsis proteins, due to isoform AtPAE9. Primitive plants that display a smaller number of PAEs clustered into two clades, while in higher plants, the presence of multiple members of PAE genes indicated a diversification of AtPAEs. 3D homology modeling of AtPAE8 from clade 2 with a human Notum protein showed an α/β hydrolase structure with the hallmark Ser-His-Asp of the active site. A 3D model of AtPAE4 from clade 1 and AtPAE10 from clade 3 showed a similar shape suggesting that the diversification of AtPAEs is unlikely to arise from the shape of the protein. Primary structure prediction analysis of AtPAEs showed a specific motif characteristic of each clade and identified one major group of AtPAEs with a signal peptide and one group without a signal peptide. A multiple sequence alignment of the putative plant PAEs revealed consensus sequences with important putative catalytic residues: Ser, Asp, His and a pectin binding site. Data mining of gene expression profiles of AtPAE revealed that genes from clade 2 including AtPAE7, AtPAE8 and AtPAE11, which are duplicated genes, are highly expressed during plant growth and development while AtPAEs without a signal peptide, including AtPAE2 and AtPAE4, are more regulated in response to plant environmental conditions.
Bioinformatic analysis of plant, and particularly Arabidopsis, AtPAEs provides novel insights, including new motifs that could play a role in pectin binding and catalytic sites. The diversification of AtPAEs is likely to be related to neofunctionalization of some AtPAE genes.
果胶是植物细胞壁多糖,其半乳糖醛酸残基的C2和/或C3位可被乙酰化。果胶的乙酰化程度可由果胶乙酰酯酶(EC 3.1.1.6,PAE)调节。植物PAE的功能和结构仍知之甚少,果胶乙酰化精细调节对细胞壁特性的作用尚未阐明。
在本研究中,对植物基因组数据库中611种植物PAE中16个物种的72种植物PAE采用了生物信息学方法。基于系统发育分析、蛋白质基序鉴定和三维结构建模,对植物PAE蛋白,特别是拟南芥PAE进行了概述。使用蛋白质序列进行的系统发育树分析将植物PAE分为五个进化枝。在植物界PAE树中,AtPAE聚类为四个进化枝,而仅对拟南芥蛋白进行系统发育树分析时,由于AtPAE9同工型,它们形成了三个进化枝。PAE数量较少的原始植物聚类为两个进化枝,而在高等植物中,PAE基因多个成员的存在表明AtPAE发生了多样化。来自进化枝2的AtPAE8与人Notum蛋白的三维同源建模显示出具有活性位点标志性Ser-His-Asp的α/β水解酶结构。来自进化枝1的AtPAE4和来自进化枝3的AtPAE10的三维模型显示出相似的形状,这表明AtPAE的多样化不太可能源于蛋白质的形状。AtPAE的一级结构预测分析显示了每个进化枝特有的特定基序,并鉴定出一组带有信号肽的主要AtPAE和一组没有信号肽的AtPAE。推测的植物PAE的多序列比对揭示了具有重要推测催化残基(Ser、Asp、His)和果胶结合位点的共有序列。AtPAE基因表达谱的数据挖掘表明,来自进化枝2的基因,包括AtPAE7、AtPAE8和AtPAE11,这些是重复基因,在植物生长发育过程中高度表达,而没有信号肽的AtPAE,包括AtPAE2和AtPAE4,对植物环境条件的响应更受调控。
对植物,特别是拟南芥AtPAE的生物信息学分析提供了新的见解,包括可能在果胶结合和催化位点起作用的新基序。AtPAE的多样化可能与一些AtPAE基因的新功能化有关。