Suppr超能文献

Brain-coX:在七个人类大脑转录组数据集中研究和可视化基因共表达

brain-coX: investigating and visualising gene co-expression in seven human brain transcriptomic datasets.

作者信息

Freytag Saskia, Burgess Rosemary, Oliver Karen L, Bahlo Melanie

机构信息

Population Health and Immunity Divison, The Walter and Eliza Hall Institute of Medical Research, 1G Royale Parade, 3052, Parkville, Australia.

Department of Medical Biology, University of Melbourne, 1G Royale Parade, 3052, Parkville, Australia.

出版信息

Genome Med. 2017 Jun 8;9(1):55. doi: 10.1186/s13073-017-0444-y.

Abstract

BACKGROUND

The pathogenesis of neurological and mental health disorders often involves multiple genes, complex interactions, as well as brain- and development-specific biological mechanisms. These characteristics make identification of disease genes for such disorders challenging, as conventional prioritisation tools are not specifically tailored to deal with the complexity of the human brain. Thus, we developed a novel web-application-brain-coX-that offers gene prioritisation with accompanying visualisations based on seven gene expression datasets in the post-mortem human brain, the largest such resource ever assembled.

RESULTS

We tested whether our tool can correctly prioritise known genes from 37 brain-specific KEGG pathways and 17 psychiatric conditions. We achieved average sensitivity of nearly 50%, at the same time reaching a specificity of approximately 75%. We also compared brain-coX's performance to that of its main competitors, Endeavour and ToppGene, focusing on the ability to discover novel associations. Using a subset of the curated SFARI autism gene collection we show that brain-coX's prioritisations are most similar to SFARI's own curated gene classifications.

CONCLUSIONS

brain-coX is the first prioritisation and visualisation web-tool targeted to the human brain and can be freely accessed via http://shiny.bioinf.wehi.edu.au/freytag.s/ .

摘要

背景

神经和精神健康障碍的发病机制通常涉及多个基因、复杂的相互作用以及大脑和发育特异性的生物学机制。这些特征使得识别此类障碍的疾病基因具有挑战性,因为传统的优先级排序工具并非专门为应对人类大脑的复杂性而设计。因此,我们开发了一种新型的网络应用程序——brain - coX,它基于死后人类大脑中的七个基因表达数据集提供基因优先级排序及相关可视化,这是有史以来收集的最大此类资源。

结果

我们测试了我们的工具是否能够正确地对来自37条脑特异性KEGG通路和17种精神疾病的已知基因进行优先级排序。我们实现了近50%的平均灵敏度,同时特异性达到约75%。我们还将brain - coX的性能与其主要竞争对手Endeavour和ToppGene进行了比较,重点关注发现新关联的能力。使用经过整理的SFARI自闭症基因集合的一个子集,我们表明brain - coX的优先级排序与SFARI自己整理的基因分类最为相似。

结论

brain - coX是首个针对人类大脑设计的优先级排序和可视化网络工具,可通过http://shiny.bioinf.wehi.edu.au/freytag.s/免费访问。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/489d/5465565/26ae48315136/13073_2017_444_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验