Suppr超能文献

工程化CRISPR-Cpf1对PAM识别改变的结构基础

Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.

作者信息

Nishimasu Hiroshi, Yamano Takashi, Gao Linyi, Zhang Feng, Ishitani Ryuichiro, Nureki Osamu

机构信息

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; JST, PRESTO, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

出版信息

Mol Cell. 2017 Jul 6;67(1):139-147.e2. doi: 10.1016/j.molcel.2017.04.019. Epub 2017 Jun 6.

Abstract

The RNA-guided Cpf1 nuclease cleaves double-stranded DNA targets complementary to the CRISPR RNA (crRNA), and it has been harnessed for genome editing technologies. Recently, Acidaminococcus sp. BV3L6 (AsCpf1) was engineered to recognize altered DNA sequences as the protospacer adjacent motif (PAM), thereby expanding the target range of Cpf1-mediated genome editing. Whereas wild-type AsCpf1 recognizes the TTTV PAM, the RVR (S542R/K548V/N552R) and RR (S542R/K607R) variants can efficiently recognize the TATV and TYCV PAMs, respectively. However, their PAM recognition mechanisms remained unknown. Here we present the 2.0 Å resolution crystal structures of the RVR and RR variants bound to a crRNA and its target DNA. The structures revealed that the RVR and RR variants primarily recognize the PAM-complementary nucleotides via the substituted residues. Our high-resolution structures delineated the altered PAM recognition mechanisms of the AsCpf1 variants, providing a basis for the further engineering of CRISPR-Cpf1.

摘要

RNA引导的Cpf1核酸酶可切割与CRISPR RNA(crRNA)互补的双链DNA靶点,并且已被用于基因组编辑技术。最近,人们对嗜酸栖热菌属菌株BV3L6(AsCpf1)进行了改造,使其能够识别经过改变的DNA序列作为原间隔序列临近基序(PAM),从而扩大了Cpf1介导的基因组编辑的靶标范围。野生型AsCpf1识别TTTV PAM,而RVR(S542R/K548V/N552R)和RR(S542R/K607R)变体则可分别有效识别TATV和TYCV PAM。然而,它们的PAM识别机制仍不清楚。在此,我们展示了与crRNA及其靶标DNA结合的RVR和RR变体的分辨率为2.0 Å的晶体结构。这些结构表明,RVR和RR变体主要通过取代的残基识别PAM互补核苷酸。我们的高分辨率结构描绘了AsCpf1变体改变后的PAM识别机制,为CRISPR-Cpf1的进一步工程改造提供了基础。

相似文献

1
Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
Mol Cell. 2017 Jul 6;67(1):139-147.e2. doi: 10.1016/j.molcel.2017.04.019. Epub 2017 Jun 6.
2
Structural Basis for the Canonical and Non-canonical PAM Recognition by CRISPR-Cpf1.
Mol Cell. 2017 Aug 17;67(4):633-645.e3. doi: 10.1016/j.molcel.2017.06.035. Epub 2017 Aug 3.
3
Engineered Cpf1 variants with altered PAM specificities.
Nat Biotechnol. 2017 Aug;35(8):789-792. doi: 10.1038/nbt.3900. Epub 2017 Jun 5.
4
The Acidaminococcus sp. Cas12a nuclease recognizes GTTV and GCTV as non-canonical PAMs.
FEMS Microbiol Lett. 2019 Apr 1;366(8). doi: 10.1093/femsle/fnz085.
5
Structural Basis for Guide RNA Processing and Seed-Dependent DNA Targeting by CRISPR-Cas12a.
Mol Cell. 2017 Apr 20;66(2):221-233.e4. doi: 10.1016/j.molcel.2017.03.016.
6
Real-time observation of DNA target interrogation and product release by the RNA-guided endonuclease CRISPR Cpf1 (Cas12a).
Proc Natl Acad Sci U S A. 2018 May 22;115(21):5444-5449. doi: 10.1073/pnas.1718686115. Epub 2018 May 7.
7
Structural Variation of Type I-F CRISPR RNA Guided DNA Surveillance.
Mol Cell. 2017 Aug 17;67(4):622-632.e4. doi: 10.1016/j.molcel.2017.06.036. Epub 2017 Aug 3.
8
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
9
Kinetic Basis for DNA Target Specificity of CRISPR-Cas12a.
Mol Cell. 2018 Sep 6;71(5):816-824.e3. doi: 10.1016/j.molcel.2018.06.043. Epub 2018 Aug 2.
10
Inhibition Mechanism of an Anti-CRISPR Suppressor AcrIIA4 Targeting SpyCas9.
Mol Cell. 2017 Jul 6;67(1):117-127.e5. doi: 10.1016/j.molcel.2017.05.024. Epub 2017 Jun 9.

引用本文的文献

1
Conformational changes induced by K949A mutation in the CRISPR-Cas12a complex drives an effective target-binding mechanism.
Curr Res Struct Biol. 2025 Aug 8;10:100173. doi: 10.1016/j.crstbi.2025.100173. eCollection 2025 Dec.
2
CRISPR/Cas system-guided plasmid mutagenesis without sequence restriction.
Fundam Res. 2022 Jul 15;5(4):1481-1487. doi: 10.1016/j.fmre.2022.06.017. eCollection 2025 Jul.
3
ENHANCED CLEAVAGE OF GENOMIC USING CASX2.
bioRxiv. 2025 Jul 11:2025.07.08.663680. doi: 10.1101/2025.07.08.663680.
4
Directed evolution expands CRISPR-Cas12a genome-editing capacity.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf649.
8
AlPaCas: allele-specific CRISPR gene editing through a protospacer-adjacent-motif (PAM) approach.
Nucleic Acids Res. 2024 Jul 5;52(W1):W29-W38. doi: 10.1093/nar/gkae419.
9
Discovery and structural mechanism of DNA endonucleases guided by RAGATH-18-derived RNAs.
Cell Res. 2024 May;34(5):370-385. doi: 10.1038/s41422-024-00952-1. Epub 2024 Apr 4.
10
Utilization of nicking properties of CRISPR-Cas12a effector for genome editing.
Sci Rep. 2024 Feb 9;14(1):3352. doi: 10.1038/s41598-024-53648-2.

本文引用的文献

1
Engineered Cpf1 variants with altered PAM specificities.
Nat Biotechnol. 2017 Aug;35(8):789-792. doi: 10.1038/nbt.3900. Epub 2017 Jun 5.
2
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
3
In vivo high-throughput profiling of CRISPR-Cpf1 activity.
Nat Methods. 2017 Feb;14(2):153-159. doi: 10.1038/nmeth.4104. Epub 2016 Dec 19.
4
Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array.
Nat Biotechnol. 2017 Jan;35(1):31-34. doi: 10.1038/nbt.3737. Epub 2016 Dec 5.
5
Structures and mechanisms of CRISPR RNA-guided effector nucleases.
Curr Opin Struct Biol. 2017 Apr;43:68-78. doi: 10.1016/j.sbi.2016.11.013. Epub 2016 Nov 30.
6
Applications of CRISPR technologies in research and beyond.
Nat Biotechnol. 2016;34(9):933-941. doi: 10.1038/nbt.3659. Epub 2016 Sep 8.
7
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.
Science. 2016 Aug 5;353(6299):aad5147. doi: 10.1126/science.aad5147.
8
Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition.
Cell Res. 2016 Aug;26(8):901-13. doi: 10.1038/cr.2016.88. Epub 2016 Jul 22.
9
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.
Nat Biotechnol. 2016 Aug;34(8):869-74. doi: 10.1038/nbt.3620. Epub 2016 Jun 27.
10
Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
Nat Biotechnol. 2016 Aug;34(8):863-8. doi: 10.1038/nbt.3609. Epub 2016 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验