Suppr超能文献

2类CRISPR-Cas系统的多样性与进化

Diversity and evolution of class 2 CRISPR-Cas systems.

作者信息

Shmakov Sergey, Smargon Aaron, Scott David, Cox David, Pyzocha Neena, Yan Winston, Abudayyeh Omar O, Gootenberg Jonathan S, Makarova Kira S, Wolf Yuri I, Severinov Konstantin, Zhang Feng, Koonin Eugene V

机构信息

Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Skolkovo 143025, Russia.

National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.

出版信息

Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.

Abstract

Class 2 CRISPR-Cas systems are characterized by effector modules that consist of a single multidomain protein, such as Cas9 or Cpf1. We designed a computational pipeline for the discovery of novel class 2 variants and used it to identify six new CRISPR-Cas subtypes. The diverse properties of these new systems provide potential for the development of versatile tools for genome editing and regulation. In this Analysis article, we present a comprehensive census of class 2 types and class 2 subtypes in complete and draft bacterial and archaeal genomes, outline evolutionary scenarios for the independent origin of different class 2 CRISPR-Cas systems from mobile genetic elements, and propose an amended classification and nomenclature of CRISPR-Cas.

摘要

2类CRISPR-Cas系统的特征是效应模块由单个多结构域蛋白组成,如Cas9或Cpf1。我们设计了一个用于发现新型2类变体的计算流程,并利用它识别出6种新的CRISPR-Cas亚型。这些新系统的多样特性为开发用于基因组编辑和调控的通用工具提供了潜力。在这篇分析文章中,我们对完整和草图形式的细菌及古菌基因组中的2类类型和2类亚型进行了全面统计,概述了不同2类CRISPR-Cas系统从移动遗传元件独立起源的进化情况,并提出了CRISPR-Cas的修订分类和命名法。

相似文献

1
Diversity and evolution of class 2 CRISPR-Cas systems.
Nat Rev Microbiol. 2017 Mar;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub 2017 Jan 23.
2
Mobile Genetic Elements and Evolution of CRISPR-Cas Systems: All the Way There and Back.
Genome Biol Evol. 2017 Oct 1;9(10):2812-2825. doi: 10.1093/gbe/evx192.
3
CRISPR Arrays Away from Genes.
CRISPR J. 2020 Dec;3(6):535-549. doi: 10.1089/crispr.2020.0062.
4
Characterization and applications of Type I CRISPR-Cas systems.
Biochem Soc Trans. 2020 Feb 28;48(1):15-23. doi: 10.1042/BST20190119.
5
CRISPR-Cas systems: beyond adaptive immunity.
Nat Rev Microbiol. 2014 May;12(5):317-26. doi: 10.1038/nrmicro3241. Epub 2014 Apr 7.
6
Diversity, classification and evolution of CRISPR-Cas systems.
Curr Opin Microbiol. 2017 Jun;37:67-78. doi: 10.1016/j.mib.2017.05.008. Epub 2017 Jun 9.
7
Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array.
Nat Biotechnol. 2017 Jan;35(1):31-34. doi: 10.1038/nbt.3737. Epub 2016 Dec 5.
8
In Silico Processing of the Complete CRISPR-Cas Spacer Space for Identification of PAM Sequences.
Biotechnol J. 2018 Sep;13(9):e1700595. doi: 10.1002/biot.201700595. Epub 2018 Aug 23.
9
Building the Class 2 CRISPR-Cas Arsenal.
Mol Cell. 2017 Feb 2;65(3):377-379. doi: 10.1016/j.molcel.2017.01.024.
10
Phylogenomics of Cas4 family nucleases.
BMC Evol Biol. 2017 Nov 28;17(1):232. doi: 10.1186/s12862-017-1081-1.

引用本文的文献

1
Advances in large-scale DNA engineering with the CRISPR system.
Exp Mol Med. 2025 Sep 1. doi: 10.1038/s12276-025-01530-0.
3
Harnessing CRISPR/Cas9 in engineering biotic stress immunity in crops.
Planta. 2025 Jul 15;262(3):54. doi: 10.1007/s00425-025-04769-z.
4
Exapted CRISPR-Cas12f homologs drive RNA-guided transcription.
bioRxiv. 2025 Jun 10:2025.06.10.658865. doi: 10.1101/2025.06.10.658865.
5
Evolution of agricultural biotechnology is the paradigm shift in crop resilience and development: a review.
Front Plant Sci. 2025 Jun 19;16:1585826. doi: 10.3389/fpls.2025.1585826. eCollection 2025.
6
The Use of CRISPR-Cas Systems for Viral Detection: A Bibliometric Analysis and Systematic Review.
Biosensors (Basel). 2025 Jun 12;15(6):379. doi: 10.3390/bios15060379.
9
A CRISPR-nonhomologous end-joining-based strategy for rapid and efficient gene disruption in .
mLife. 2025 Apr 23;4(2):169-180. doi: 10.1002/mlf2.70007. eCollection 2025 Apr.
10
A new strategy for Cas protein recognition based on graph neural networks and SMILES encoding.
Sci Rep. 2025 Apr 30;15(1):15236. doi: 10.1038/s41598-025-99999-2.

本文引用的文献

1
Two Distant Catalytic Sites Are Responsible for C2c2 RNase Activities.
Cell. 2017 Jan 12;168(1-2):121-134.e12. doi: 10.1016/j.cell.2016.12.031.
2
Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28.
Mol Cell. 2017 Feb 16;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub 2017 Jan 5.
3
New CRISPR-Cas systems from uncultivated microbes.
Nature. 2017 Feb 9;542(7640):237-241. doi: 10.1038/nature21059. Epub 2016 Dec 22.
4
C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
Mol Cell. 2017 Jan 19;65(2):310-322. doi: 10.1016/j.molcel.2016.11.040. Epub 2016 Dec 15.
5
PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease.
Cell. 2016 Dec 15;167(7):1814-1828.e12. doi: 10.1016/j.cell.2016.11.053.
6
Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection.
Nature. 2016 Oct 13;538(7624):270-273. doi: 10.1038/nature19802. Epub 2016 Sep 26.
7
Anti-cas spacers in orphan CRISPR4 arrays prevent uptake of active CRISPR-Cas I-F systems.
Nat Microbiol. 2016 Jun 6;1(8):16081. doi: 10.1038/nmicrobiol.2016.81.
8
Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems.
Science. 2016 Aug 5;353(6299):aad5147. doi: 10.1126/science.aad5147.
9
Genome-wide specificities of CRISPR-Cas Cpf1 nucleases in human cells.
Nat Biotechnol. 2016 Aug;34(8):869-74. doi: 10.1038/nbt.3620. Epub 2016 Jun 27.
10
C-Brick: A New Standard for Assembly of Biological Parts Using Cpf1.
ACS Synth Biol. 2016 Dec 16;5(12):1383-1388. doi: 10.1021/acssynbio.6b00114. Epub 2016 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验