Bertoli-Barsotti Lucio, Lando Tommaso
Department of Management, Economics and Quantitative Methods, University of Bergamo, via dei Caniana 2, 24127 Bergamo, Italy.
Department of Finance, VŠB -TU Ostrava, Sokolskà 33, 70121 Ostrava, Czech Republic.
Scientometrics. 2017;111(3):1415-1448. doi: 10.1007/s11192-017-2351-9. Epub 2017 Mar 20.
Of the existing theoretical formulas for the -index, those recently suggested by Burrell (J Informetr 7:774-783, 2013b) and by Bertoli-Barsotti and Lando (J Informetr 9(4):762-776, 2015) have proved very effective in estimating the actual value of the -index Hirsch (Proc Natl Acad Sci USA 102:16569-16572, 2005), at least at the level of the individual scientist. These approaches lead (or may lead) to two slightly different formulas, being based, respectively, on a "standard" and a "shifted" version of the geometric distribution. In this paper, we review the genesis of these two formulas-which we shall call the "basic" and "improved" Lambert- formula for the -index-and compare their effectiveness with that of a number of instances taken from the well-known Glänzel-Schubert class of models for the -index (based, instead, on a Paretian model) by means of an empirical study. All the formulas considered in the comparison are "ready-to-use", i.e., functions of simple citation indicators such as: the total number of publications; the total number of citations; the total number of cited paper; the number of citations of the most cited paper. The empirical study is based on citation data obtained from two different sets of journals belonging to two different scientific fields: more specifically, 231 journals from the area of "Statistics and Mathematical Methods" and 100 journals from the area of "Economics, Econometrics and Finance", totaling almost 100,000 and 20,000 publications, respectively. The citation data refer to different publication/citation time windows, different types of "citable" documents, and alternative approaches to the analysis of the citation process ("prospective" and "retrospective"). We conclude that, especially in its improved version, the Lambert- formula for the -index provides a quite robust and effective ready-to-use rule that should be preferred to other known formulas if one's goal is (simply) to derive a reliable estimate of the -index.
在现有的关于h指数的理论公式中,Burrell(《信息计量学杂志》7:774 - 783,2013b)以及Bertoli - Barsotti和Lando(《信息计量学杂志》9(4):762 - 776,2015)最近提出的公式,已证明在估计h指数(Hirsch,《美国国家科学院院刊》102:16569 - 16572,2005)的实际值方面非常有效,至少在个体科学家层面是这样。这些方法分别基于几何分布的“标准”和“移位”版本,得出(或可能得出)两个略有不同的公式。在本文中,我们回顾这两个公式(我们将其称为h指数的“基本”和“改进”兰伯特公式)的起源,并通过实证研究将它们的有效性与从著名的用于h指数的Glänzel - Schubert模型类(基于帕累托模型)中选取的一些实例进行比较。比较中考虑的所有公式都是“即用型”的,即简单引用指标的函数,如:出版物总数;被引总数;被引论文总数;被引次数最多的论文的被引次数。实证研究基于从属于两个不同科学领域的两组不同期刊获取的引用数据:更具体地说,来自“统计与数学方法”领域有231种期刊,来自“经济学、计量经济学与金融”领域有100种期刊,分别总计近100,000篇和20,000篇出版物。引用数据涉及不同的出版/引用时间窗口、不同类型的“可引用”文档以及引用过程分析的替代方法(“前瞻性”和“回顾性”)。我们得出结论,特别是在其改进版本中,如果目标只是(简单地)获得h指数的可靠估计值,那么h指数的兰伯特公式提供了一个相当稳健且有效的即用型规则,应优先于其他已知公式。