Imaging and Chemical Analysis Laboratory, Montana State University , Bozeman, Montana 59717, United States.
Materials Science Division, Argonne National Laboratory , Argonne, Illinois 60439, United States.
ACS Appl Mater Interfaces. 2017 Jul 5;9(26):21879-21890. doi: 10.1021/acsami.7b04481. Epub 2017 Jun 23.
Polarization-induced weak ferromagnetism (WFM) was demonstrated a few years back in LiNbO-type compounds, MTiO (M = Fe, Mn, Ni). Although the coexistence of ferroelectric polarization and ferromagnetism has been demonstrated in this rare multiferroic family before, first in bulk FeTiO, then in thin-film NiTiO, the coupling of the two order parameters has not been confirmed. Here, we report the stabilization of polar, ferromagnetic NiTiO by oxide epitaxy on a LiNbO substrate utilizing tensile strain and demonstrate the theoretically predicted coupling between its polarization and ferromagnetism by X-ray magnetic circular dichroism under applied fields. The experimentally observed direction of ferroic ordering in the film is supported by simulations using the phase-field approach. Our work validates symmetry-based criteria and first-principles calculations of the coexistence of ferroelectricity and WFM in MTiO transition metal titanates crystallizing in the LiNbO structure. It also demonstrates the applicability of epitaxial strain as a viable alternative to high-pressure crystal growth to stabilize metastable materials and a valuable tuning parameter to simultaneously control two ferroic order parameters to create a multiferroic. Multiferroic NiTiO has potential applications in spintronics where ferroic switching is used, such as new four-stage memories and electromagnetic switches.
几年前,在 LiNbO 型化合物 MTiO(M = Fe、Mn、Ni)中发现了由极化诱导的弱铁磁性(WFM)。尽管在此前的稀有的多铁性家族中已经证明了铁电极化和铁磁性共存,先是在体相 FeTiO 中,然后在 NiTiO 薄膜中,但两个有序参数的耦合尚未得到证实。在这里,我们通过利用拉伸应变在 LiNbO 衬底上进行氧化物外延,稳定了具有极性和铁磁性的 NiTiO,并通过施加磁场下的 X 射线磁圆二色性证明了理论预测的极化与铁磁性之间的耦合。实验观察到的薄膜中铁电有序的方向得到了使用相场方法进行的模拟的支持。我们的工作验证了基于对称性的准则和第一性原理计算,即在 LiNbO 结构中结晶的 MTiO 过渡金属钛酸盐中同时存在铁电性和 WFM 的合理性。它还证明了外延应变作为一种可行的替代高压晶体生长来稳定亚稳材料的方法,以及一种有价值的调谐参数,可同时控制两个铁电有序参数以产生多铁性。多铁性 NiTiO 在自旋电子学中有潜在的应用,例如新的四阶存储器和电磁开关,其中铁电切换被用于这些应用。