Trassin Morgan
Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich.
J Phys Condens Matter. 2016 Jan 27;28(3):033001. doi: 10.1088/0953-8984/28/3/033001. Epub 2015 Dec 24.
We review the recent progress in the field of multiferroic magnetoelectric heterostructures. The lack of single phase multiferroic candidates exhibiting simultaneously strong and coupled magnetic and ferroelectric orders led to an increased effort into the development of artificial multiferroic heterostructures in which these orders are combined by assembling different materials. The magnetoelectric coupling emerging from the created interface between the ferroelectric and ferromagnetic layers can result in electrically tunable magnetic transition temperature, magnetic anisotropy or magnetization reversal. The full potential of low energy consumption magnetic based devices for spintronics lies in our understanding of the magnetoelectric coupling at the scale of the ferroic domains. Although the thin film synthesis progresses resulted into the complete control of ferroic domain ordering using epitaxial strain, the local observation of magnetoelectric coupling remains challenging. The ability to imprint ferroelectric domains into ferromagnets and to manipulate those solely using electric fields suggests new technological advances for spintronics such as magnetoelectric memories or memristors.
我们回顾了多铁性磁电异质结构领域的最新进展。缺乏同时展现出强且耦合的磁序和铁电序的单相多铁性候选材料,促使人们加大了对人工多铁性异质结构开发的投入,在这类结构中,通过组装不同材料来结合这些序。铁电层和铁磁层之间形成的界面产生的磁电耦合,可导致磁转变温度、磁各向异性或磁化反转的电可调性。基于低能耗磁性的自旋电子器件的全部潜力,在于我们对铁电畴尺度下磁电耦合的理解。尽管薄膜合成技术的进步已实现了利用外延应变对铁电畴有序性的完全控制,但磁电耦合的局部观测仍具有挑战性。将铁电畴印刻到铁磁体中并仅用电场对其进行操控的能力,为自旋电子学带来了新的技术进展,如磁电存储器或忆阻器。