Suppr超能文献

氧化磷酸化作为结核病的靶点:成功、谨慎和未来方向。

Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions.

机构信息

University of Otago, Department of Microbiology and Immunology, Otago School of Medical Sciences, Dunedin, New Zealand.

Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland 1042, New Zealand.

出版信息

Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0014-2016.

Abstract

The emergence and spread of drug-resistant pathogens, and our inability to develop new antimicrobials to combat resistance, have inspired scientists to seek out new targets for drug development. The complex is a group of obligately aerobic bacteria that have specialized for inhabiting a wide range of intracellular and extracellular environments. Two fundamental features in this adaptation are the flexible utilization of energy sources and continued metabolism in the absence of growth. is an obligately aerobic heterotroph that depends on oxidative phosphorylation for growth and survival. However, several studies are redefining the metabolic breadth of the genus. Alternative electron donors and acceptors may provide the maintenance energy for the pathogen to maintain viability in hypoxic, nonreplicating states relevant to latent infection. This hidden metabolic flexibility may ultimately decrease the efficacy of drugs targeted against primary dehydrogenases and terminal oxidases. However, it may also open up opportunities to develop novel antimycobacterials targeting persister cells. In this review, we discuss the progress in understanding the role of energetic targets in mycobacterial physiology and pathogenesis and the opportunities for drug discovery.

摘要

耐药病原体的出现和传播,以及我们无法开发新的抗生素来对抗耐药性,这激发了科学家们寻找药物开发的新靶点。生酮菌是一组严格需氧的细菌,它们专门栖息在广泛的细胞内和细胞外环境中。这种适应的两个基本特征是灵活利用能源和在没有生长的情况下继续新陈代谢。生酮菌是一种严格需氧的异养生物,它依赖于氧化磷酸化来生长和存活。然而,一些研究正在重新定义该属的代谢广度。替代电子供体和受体可能为病原体提供维持能量,使其在与潜伏感染相关的缺氧、非复制状态下保持生存能力。这种隐藏的代谢灵活性最终可能降低针对主要脱氢酶和末端氧化酶的药物的疗效。然而,它也为开发针对休眠细胞的新型抗分枝杆菌药物提供了机会。在这篇综述中,我们讨论了在理解能量靶点在分枝杆菌生理学和发病机制中的作用方面的进展,以及药物发现的机会。

相似文献

1
Oxidative Phosphorylation as a Target Space for Tuberculosis: Success, Caution, and Future Directions.
Microbiol Spectr. 2017 Jun;5(3). doi: 10.1128/microbiolspec.TBTB2-0014-2016.
2
Targeting Energy Metabolism in , a New Paradigm in Antimycobacterial Drug Discovery.
mBio. 2017 Apr 11;8(2):e00272-17. doi: 10.1128/mBio.00272-17.
3
Study of the bioenergetics to identify the novel pathways as a drug target against Mycobacterium tuberculosis using Petri net.
Biosystems. 2021 Nov;209:104509. doi: 10.1016/j.biosystems.2021.104509. Epub 2021 Aug 27.
4
Small organic molecules targeting the energy metabolism of Mycobacterium tuberculosis.
Eur J Med Chem. 2021 Feb 15;212:113139. doi: 10.1016/j.ejmech.2020.113139. Epub 2020 Dec 29.
6
Novel proteasome inhibitors as potential drugs to combat tuberculosis.
J Mol Cell Biol. 2010 Aug;2(4):173-5. doi: 10.1093/jmcb/mjp053. Epub 2010 Jan 31.
8
Insights into the Physiology and Metabolism of a Mycobacterial Cell in an Energy-Compromised State.
J Bacteriol. 2019 Sep 6;201(19). doi: 10.1128/JB.00210-19. Print 2019 Oct 1.
9
Redox-guided small molecule antimycobacterials.
IUBMB Life. 2018 Sep;70(9):826-835. doi: 10.1002/iub.1867. Epub 2018 May 14.
10
Energetics of pathogenic bacteria and opportunities for drug development.
Adv Microb Physiol. 2014;65:1-62. doi: 10.1016/bs.ampbs.2014.08.001. Epub 2014 Nov 4.

引用本文的文献

2
A potent phenylalkylamine disrupts mycobacterial membrane bioenergetics and augments bactericidal activity of bedaquiline.
iScience. 2025 Jun 18;28(7):112915. doi: 10.1016/j.isci.2025.112915. eCollection 2025 Jul 18.
3
New Triazolopyrimidines with Improved Activity against .
ACS Med Chem Lett. 2025 May 1;16(6):1008-1016. doi: 10.1021/acsmedchemlett.5c00073. eCollection 2025 Jun 12.
4
Revolutionizing tuberculosis treatment: Breakthroughs, challenges, and hope on the horizon.
Acta Pharm Sin B. 2025 Mar;15(3):1311-1332. doi: 10.1016/j.apsb.2025.01.023. Epub 2025 Jan 31.
5
Efficacy of novel regimens targeting oxidative phosphorylation in .
Antimicrob Agents Chemother. 2025 Jun 4;69(6):e0001925. doi: 10.1128/aac.00019-25. Epub 2025 Apr 22.
6
Structural and mechanistic study of a novel inhibitor analogue of cytochrome bc:aa.
NPJ Drug Discov. 2025;2(1):6. doi: 10.1038/s44386-025-00008-3. Epub 2025 Apr 2.

本文引用的文献

1
Antiinfectives targeting enzymes and the proton motive force.
Proc Natl Acad Sci U S A. 2015 Dec 22;112(51):E7073-82. doi: 10.1073/pnas.1521988112. Epub 2015 Dec 7.
2
Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline.
Sci Adv. 2015 May 8;1(4):e1500106. doi: 10.1126/sciadv.1500106. eCollection 2015 May.
3
Polyketide Quinones Are Alternate Intermediate Electron Carriers during Mycobacterial Respiration in Oxygen-Deficient Niches.
Mol Cell. 2015 Nov 19;60(4):637-50. doi: 10.1016/j.molcel.2015.10.016. Epub 2015 Nov 12.
4
Acquired Resistance to Bedaquiline and Delamanid in Therapy for Tuberculosis.
N Engl J Med. 2015 Nov 12;373(20):1986-8. doi: 10.1056/NEJMc1505196.
5
Partial Saturation of Menaquinone in : Function and Essentiality of a Novel Reductase, MenJ.
ACS Cent Sci. 2015 Sep 23;1(6):292-302. doi: 10.1021/acscentsci.5b00212. Epub 2015 Aug 12.
6
Sequence-Structure-Function Classification of a Catalytically Diverse Oxidoreductase Superfamily in Mycobacteria.
J Mol Biol. 2015 Nov 6;427(22):3554-3571. doi: 10.1016/j.jmb.2015.09.021. Epub 2015 Oct 3.
7
The CydDC Family of Transporters and Their Roles in Oxidase Assembly and Homeostasis.
Adv Microb Physiol. 2015;66:1-53. doi: 10.1016/bs.ampbs.2015.04.002. Epub 2015 Jun 10.
9
Lansoprazole is an antituberculous prodrug targeting cytochrome bc1.
Nat Commun. 2015 Jul 9;6:7659. doi: 10.1038/ncomms8659.
10
Antibiotic efficacy is linked to bacterial cellular respiration.
Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8173-80. doi: 10.1073/pnas.1509743112. Epub 2015 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验