Suppr超能文献

供体-受体正交共轭聚合物的合成与激子动力学:降低单线态-三线态能隙。

Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet-Triplet Energy Gap.

机构信息

Department of Chemistry, University College London , 20 Gordon Street., London WC1H 0AJ, U.K.

Cavendish Laboratory, University of Cambridge , JJ Thomson Avenue, Cambridge CB3 0HE, U.K.

出版信息

J Am Chem Soc. 2017 Aug 16;139(32):11073-11080. doi: 10.1021/jacs.7b03327. Epub 2017 Jun 23.

Abstract

The presence of energetically low-lying triplet states is a hallmark of organic semiconductors. Even though they present a wealth of interesting photophysical properties, these optically dark states significantly limit optoelectronic device performance. Recent advances in emissive charge-transfer molecules have pioneered routes to reduce the energy gap between triplets and "bright" singlets, allowing thermal population exchange between them and eliminating a significant loss channel in devices. In conjugated polymers, this gap has proved resistant to modification. Here, we introduce a general approach to reduce the singlet-triplet energy gap in fully conjugated polymers, using a donor-orthogonal acceptor motif to spatially separate electron and hole wave functions. This new generation of conjugated polymers allows for a greatly reduced exchange energy, enhancing triplet formation and enabling thermally activated delayed fluorescence. We find that the mechanisms of both processes are driven by excited-state mixing between π-π*and charge-transfer states, affording new insight into reverse intersystem crossing.

摘要

三重态的低能态的存在是有机半导体的一个标志。尽管它们具有丰富的有趣的光物理性质,但这些光学暗态显著限制了光电设备的性能。最近在发射电荷转移分子方面的进展开创了减少三重态和“明亮”单重态之间能隙的途径,允许它们之间的热种群交换,并消除设备中的一个重要损耗通道。在共轭聚合物中,这种间隙被证明难以修饰。在这里,我们引入了一种通用的方法,使用给体-正交受体模体来空间分离电子和空穴波函数,从而在完全共轭聚合物中降低单重态-三重态能量间隙。这新一代的共轭聚合物允许大大降低交换能,增强三重态的形成,并实现热激活延迟荧光。我们发现,这两个过程的机制都是由π-π*和电荷转移态之间的激发态混合驱动的,这为反向系间窜跃提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验