NanoLund and Solid State Physics, Lund University , Box 118, 22100 Lund, Sweden.
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales , 2052 Sydney, Australia.
Nano Lett. 2017 Jul 12;17(7):4055-4060. doi: 10.1021/acs.nanolett.7b00536. Epub 2017 Jun 16.
The photothermoelectric (PTE) effect uses nonuniform absorption of light to produce a voltage via the Seebeck effect and is of interest for optical sensing and solar-to-electric energy conversion. However, the utility of PTE devices reported to date has been limited by the need to use a tightly focused laser spot to achieve the required, nonuniform illumination and by their dependence upon the Seebeck coefficients of the constituent materials, which exhibit limited tunability and, generally, low values. Here, we use InAs/InP heterostructure nanowires to overcome these limitations: first, we use naturally occurring absorption "hot spots" at wave mode maxima within the nanowire to achieve sharp boundaries between heated and unheated subwavelength regions of high and low absorption, allowing us to use global illumination; second, we employ carrier energy-filtering heterostructures to achieve a high Seebeck coefficient that is tunable by heterostructure design. Using these methods, we demonstrate PTE voltages of hundreds of millivolts at room temperature from a globally illuminated nanowire device. Furthermore, we find PTE currents and voltages that change polarity as a function of the wavelength of illumination due to spatial shifting of subwavelength absorption hot spots. These results indicate the feasibility of designing new types of PTE-based photodetectors, photothermoelectrics, and hot-carrier solar cells using nanowires.
光热电 (PTE) 效应利用光的非均匀吸收,通过塞贝克效应产生电压,这对于光学传感和太阳能到电能的转换很有意义。然而,迄今为止报道的 PTE 器件的实用性受到以下因素的限制:需要使用聚焦激光束来实现所需的非均匀照明,以及它们依赖于组成材料的塞贝克系数,这些系数的可调性有限,通常值较低。在这里,我们使用 InAs/InP 异质结构纳米线来克服这些限制:首先,我们利用纳米线内在的波模最大值处的自然吸收“热点”,在加热和未加热的亚波长高吸收区和低吸收区之间实现了明显的边界,从而可以使用全局照明;其次,我们采用载流子能量过滤异质结构来实现可调谐的高塞贝克系数,这可以通过异质结构设计来实现。通过这些方法,我们从全局照明的纳米线器件中演示了室温下数百毫伏的 PTE 电压。此外,我们发现 PTE 电流和电压会随照明波长的变化而改变极性,这是由于亚波长吸收热点的空间移动所致。这些结果表明,使用纳米线设计新型基于 PTE 的光电探测器、光热电和热载流子太阳能电池是可行的。