Suppr超能文献

龙猫中耳传输矩阵模型与中耳柔韧性

Chinchilla middle ear transmission matrix model and middle-ear flexibility.

作者信息

Ravicz Michael E, Rosowski John J

机构信息

Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.

出版信息

J Acoust Soc Am. 2017 May;141(5):3274. doi: 10.1121/1.4982925.

Abstract

The function of the middle ear (ME) in transforming ME acoustic inputs and outputs (sound pressures and volume velocities) can be described with an acoustic two-port transmission matrix. This description is independent of the load on the ME (cochlea or ear canal) and holds in either direction: forward (from ear canal to cochlea) or reverse (from cochlea to ear canal). A transmission matrix describing ME function in chinchilla, an animal commonly used in auditory research, is presented, computed from measurements of forward ME function: input admittance Y, ME pressure gain G, ME velocity transfer function H, and cochlear input admittance Y, in the same set of ears [Ravicz and Rosowski (2012b). J. Acoust. Soc. Am. 132, 2437-2454; (2013a). J. Acoust. Soc. Am. 133, 2208-2223; (2013b). J. Acoust. Soc. Am. 134, 2852-2865]. Unlike previous estimates, these computations require no assumptions about the state of the inner ear, effectiveness of ME manipulations, or measurements of sound transmission in the reverse direction. These element values are generally consistent with physical constraints and the anatomical ME "transformer ratio." Differences from a previous estimate in chinchilla [Songer and Rosowski (2007). J. Acoust. Soc. Am. 122, 932-942] may be due to a difference in ME flexibility between the two subject groups.

摘要

中耳(ME)在转换其声学输入和输出(声压和体积速度)方面的功能可以用一个声学双端口传输矩阵来描述。这种描述与中耳的负载(耳蜗或耳道)无关,并且在两个方向上都成立:正向(从耳道到耳蜗)或反向(从耳蜗到耳道)。本文给出了一个描述毛丝鼠中耳功能的传输矩阵,毛丝鼠是听觉研究中常用的动物,该矩阵是根据同一组耳朵中正向中耳功能的测量值计算得出的:输入导纳Y、中耳压力增益G、中耳速度传递函数H以及耳蜗输入导纳Y [拉维茨和罗斯科夫斯基(2012b)。《美国声学学会杂志》132卷,2437 - 2454页;(2013a)。《美国声学学会杂志》133卷,2208 - 2223页;(2013b)。《美国声学学会杂志》134卷,2852 - 2865页]。与之前的估计不同,这些计算不需要对内耳状态、中耳操作的有效性或反向声音传输的测量做出任何假设。这些元素值通常与物理约束和解剖学中耳“变压器比率”一致。与之前对毛丝鼠的估计[宋格和罗斯科夫斯基(2007)。《美国声学学会杂志》122卷,932 - 942页]存在差异,可能是由于两组实验对象的中耳柔韧性不同。

相似文献

3
Transmission matrix analysis of the chinchilla middle ear.灰鼠中耳的传输矩阵分析
J Acoust Soc Am. 2007 Aug;122(2):932-42. doi: 10.1121/1.2747157.
10

本文引用的文献

6
Evidence of inner ear contribution in bone conduction in chinchilla.证明在南美栗鼠的骨导中内耳的作用。
Hear Res. 2013 Jul;301:66-71. doi: 10.1016/j.heares.2012.11.014. Epub 2012 Dec 1.
7
Flexibility within the middle ears of vertebrates.脊椎动物中耳的灵活性。
J Laryngol Otol. 2013 Jan;127(1):2-14. doi: 10.1017/S0022215112002496. Epub 2012 Nov 12.
9
Ossicular motion related to middle ear transmission delay in gerbil.沙鼠中耳传音时距相关的听小骨运动。
Hear Res. 2010 Dec 1;270(1-2):158-72. doi: 10.1016/j.heares.2010.07.010. Epub 2010 Aug 7.
10
Transmission matrix analysis of the chinchilla middle ear.灰鼠中耳的传输矩阵分析
J Acoust Soc Am. 2007 Aug;122(2):932-42. doi: 10.1121/1.2747157.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验