Ravicz Michael E, Rosowski John J
Eaton-Peabody Laboratory, Massachusetts Eye & Ear Infirmary, 243 Charles Street, Boston, Massachusetts 02114, USA.
J Acoust Soc Am. 2017 May;141(5):3274. doi: 10.1121/1.4982925.
The function of the middle ear (ME) in transforming ME acoustic inputs and outputs (sound pressures and volume velocities) can be described with an acoustic two-port transmission matrix. This description is independent of the load on the ME (cochlea or ear canal) and holds in either direction: forward (from ear canal to cochlea) or reverse (from cochlea to ear canal). A transmission matrix describing ME function in chinchilla, an animal commonly used in auditory research, is presented, computed from measurements of forward ME function: input admittance Y, ME pressure gain G, ME velocity transfer function H, and cochlear input admittance Y, in the same set of ears [Ravicz and Rosowski (2012b). J. Acoust. Soc. Am. 132, 2437-2454; (2013a). J. Acoust. Soc. Am. 133, 2208-2223; (2013b). J. Acoust. Soc. Am. 134, 2852-2865]. Unlike previous estimates, these computations require no assumptions about the state of the inner ear, effectiveness of ME manipulations, or measurements of sound transmission in the reverse direction. These element values are generally consistent with physical constraints and the anatomical ME "transformer ratio." Differences from a previous estimate in chinchilla [Songer and Rosowski (2007). J. Acoust. Soc. Am. 122, 932-942] may be due to a difference in ME flexibility between the two subject groups.
中耳(ME)在转换其声学输入和输出(声压和体积速度)方面的功能可以用一个声学双端口传输矩阵来描述。这种描述与中耳的负载(耳蜗或耳道)无关,并且在两个方向上都成立:正向(从耳道到耳蜗)或反向(从耳蜗到耳道)。本文给出了一个描述毛丝鼠中耳功能的传输矩阵,毛丝鼠是听觉研究中常用的动物,该矩阵是根据同一组耳朵中正向中耳功能的测量值计算得出的:输入导纳Y、中耳压力增益G、中耳速度传递函数H以及耳蜗输入导纳Y [拉维茨和罗斯科夫斯基(2012b)。《美国声学学会杂志》132卷,2437 - 2454页;(2013a)。《美国声学学会杂志》133卷,2208 - 2223页;(2013b)。《美国声学学会杂志》134卷,2852 - 2865页]。与之前的估计不同,这些计算不需要对内耳状态、中耳操作的有效性或反向声音传输的测量做出任何假设。这些元素值通常与物理约束和解剖学中耳“变压器比率”一致。与之前对毛丝鼠的估计[宋格和罗斯科夫斯基(2007)。《美国声学学会杂志》122卷,932 - 942页]存在差异,可能是由于两组实验对象的中耳柔韧性不同。