Bataillé Laetitia, Boukhatmi Hadi, Frendo Jean-Louis, Vincent Alain
Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France.
Present address: Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
BMC Biol. 2017 Jun 9;15(1):48. doi: 10.1186/s12915-017-0386-2.
A stereotyped array of body wall muscles enables precision and stereotypy of animal movements. In Drosophila, each syncytial muscle forms via fusion of one founder cell (FC) with multiple fusion competent myoblasts (FCMs). The specific morphology of each muscle, i.e. distinctive shape, orientation, size and skeletal attachment sites, reflects the specific combination of identity transcription factors (iTFs) expressed by its FC. Here, we addressed three questions: Are FCM nuclei naive? What is the selectivity and temporal sequence of transcriptional reprogramming of FCMs recruited into growing syncytium? Is transcription of generic myogenic and identity realisation genes coordinated during muscle differentiation?
The tracking of nuclei in developing muscles shows that FCM nuclei are competent to be transcriptionally reprogrammed to a given muscle identity, post fusion. In situ hybridisation to nascent transcripts for FCM, FC-generic and iTF genes shows that this reprogramming is progressive, beginning by repression of FCM-specific genes in fused nuclei, with some evidence that FC nuclei retain specific characteristics. Transcription of identity realisation genes is linked to iTF activation and regulated at levels of both transcription initiation rate and period of transcription. The generic muscle differentiation programme is activated independently.
Transcription reprogramming of fused myoblast nuclei is progressive, such that nuclei within a syncytial fibre at a given time point during muscle development are heterogeneous with regards to specific gene transcription. This comprehensive view of the dynamics of transcriptional (re)programming of post-mitotic nuclei within syncytial cells provides a new framework for understanding the transcriptional control of the lineage diversity of multinucleated cells.
定型的体壁肌肉阵列可实现动物运动的精确性和刻板性。在果蝇中,每个合胞体肌肉通过一个成肌祖细胞(FC)与多个融合能力成肌细胞(FCM)融合形成。每块肌肉的特定形态,即独特的形状、方向、大小和骨骼附着位点,反映了其FC所表达的身份转录因子(iTF)的特定组合。在此,我们探讨了三个问题:FCM细胞核是未分化的吗?招募到生长中的合胞体中的FCM转录重编程的选择性和时间顺序是什么?在肌肉分化过程中,通用成肌基因和身份实现基因的转录是协调的吗?
对发育中肌肉细胞核的追踪表明,FCM细胞核在融合后有能力被转录重编程为特定的肌肉身份。对FCM、FC通用基因和iTF基因的新生转录本进行原位杂交表明,这种重编程是渐进的,始于融合细胞核中FCM特异性基因的抑制,有一些证据表明FC细胞核保留了特定特征。身份实现基因的转录与iTF激活相关,并在转录起始速率和转录周期水平上受到调控。通用肌肉分化程序是独立激活的。
融合的成肌细胞核的转录重编程是渐进的,因此在肌肉发育过程中给定时间点的合胞体纤维内的细胞核在特定基因转录方面是异质的。这种对合胞体细胞内有丝分裂后细胞核转录(重)编程动态的全面看法为理解多核细胞谱系多样性的转录控制提供了一个新框架。