Enriquez Jonathan, Vincent Alain
Centre de Biologie du Développement, UMR 5547 CNRS/UPS and IFR 109, Institut d’Exploration Fonctionnelle des Génomes, Toulouse, France.
Fly (Austin). 2010 Jul-Sep;4(3):249-52. doi: 10.4161/fly.4.3.12281.
Textbook drawings of human anatomy illustrate the diversity of body muscles that are essential for coordinated movements. The genetic and molecular bases of this muscle diversity remain, however, largely unknown. The rather simple Drosophila larval musculature--every (hemi)-segment of the Drosophila larva contains about 30 different somatic muscles, each composed of a single multinucleate syncitial fibre--makes it an ideal model to study this process. Each muscle displays its own identity which can be described as its specific position and orientation with respect to the dorso-ventral (D/V) and antero-posterior (A/P) axes, size (number of nuclei), attachment sites to the epidermis and innervations. Muscle specification is a multi-step process. Each muscle is seeded by a founder cell (FC). FCs display the unique property of being able to undergo multiple rounds of fusion with fusion competent myoblasts (FCMs). The current view is that muscle identity reflects the expression by each FC of a specific combination of "identity" transcription factors (iTFs) (reviews by [4, 5]). The transcriptional identity is propagated from the FC to nuclei of FCM recruited by the growing myofibre during the fusion process. FCs are born from the asymmetric division of progenitor cells which are themselves selected by Notch (N)-mediated lateral inhibition from promuscular clusters (equivalence groups of cells) specified at fixed positions within the somatic mesoderm; see Fig.2). The abdominal (A) A2 to A7 segments of the Drosophila embryo present the same muscle pattern, the thoracic (T) T2-T3 and A1 segments show variations of this pattern and the first thoracic segment (T1) and the eighth abdominal segment (A8) present fewer and more diversified muscles. While it is has long been shown that this diversification of the muscle pattern is determined by the autonomous function of homeotic genes in the mesoderm, the step at which segment-specific information carried by Hox proteins is integrated into the muscle specification process remained unknown.
人体解剖学的教科书插图展示了对于协调运动至关重要的身体肌肉的多样性。然而,这种肌肉多样性的遗传和分子基础在很大程度上仍然未知。果蝇幼虫的肌肉组织相当简单——果蝇幼虫的每个(半)体节包含大约30种不同的体壁肌肉,每一种都由单个多核合胞体纤维组成——这使其成为研究这一过程的理想模型。每块肌肉都有其自身的特征,这可以描述为其相对于背腹(D/V)轴和前后(A/P)轴的特定位置和方向、大小(细胞核数量)、与表皮的附着位点以及神经支配。肌肉特化是一个多步骤过程。每块肌肉都由一个成肌细胞(FC)起始。成肌细胞具有能够与有融合能力的成肌细胞(FCM)进行多轮融合的独特特性。目前的观点是,肌肉特征反映了每个成肌细胞对“特征”转录因子(iTFs)特定组合的表达(见[4,5]的综述)。转录特征在融合过程中从成肌细胞传递到由生长中的肌纤维募集的有融合能力的成肌细胞核中。成肌细胞由祖细胞的不对称分裂产生,而祖细胞本身是通过Notch(N)介导的侧向抑制从体壁中胚层内固定位置指定的前肌簇(细胞等价组)中选择的;见图2)。果蝇胚胎的腹部(A)A2至A7体节呈现相同的肌肉模式,胸部(T)T2 - T3和A1体节显示这种模式的变化,而第一胸节(T1)和第八腹节(A8)的肌肉较少且更多样化。虽然长期以来一直表明这种肌肉模式的多样化是由中胚层中同源异型基因的自主功能决定的,但Hox蛋白携带的节段特异性信息整合到肌肉特化过程中的步骤仍然未知。