Suppr超能文献

基因表达存在多位点局部调控时对eQTL精细定位的限制

Constraints on eQTL Fine Mapping in the Presence of Multisite Local Regulation of Gene Expression.

作者信息

Zeng Biao, Lloyd-Jones Luke R, Holloway Alexander, Marigorta Urko M, Metspalu Andres, Montgomery Grant W, Esko Tonu, Brigham Kenneth L, Quyyumi Arshed A, Idaghdour Youssef, Yang Jian, Visscher Peter M, Powell Joseph E, Gibson Greg

机构信息

School of Biological Sciences and Center for Integrative Genomics, Georgia Institute of Technology, Atlanta, Georgia 30332.

Institute for Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia.

出版信息

G3 (Bethesda). 2017 Aug 7;7(8):2533-2544. doi: 10.1534/g3.117.043752.

Abstract

Expression quantitative trait locus (eQTL) detection has emerged as an important tool for unraveling of the relationship between genetic risk factors and disease or clinical phenotypes. Most studies use single marker linear regression to discover primary signals, followed by sequential conditional modeling to detect secondary genetic variants affecting gene expression. However, this approach assumes that functional variants are sparsely distributed and that close linkage between them has little impact on estimation of their precise location and the magnitude of effects. We describe a series of simulation studies designed to evaluate the impact of linkage disequilibrium (LD) on the fine mapping of causal variants with typical eQTL effect sizes. In the presence of multisite regulation, even though between 80 and 90% of modeled eSNPs associate with normally distributed traits, up to 10% of all secondary signals could be statistical artifacts, and at least 5% but up to one-quarter of credible intervals of SNPs within > 0.8 of the peak may not even include a causal site. The Bayesian methods eCAVIAR and DAP (Deterministic Approximation of Posteriors) provide only modest improvement in resolution. Given the strong empirical evidence that gene expression is commonly regulated by more than one variant, we conclude that the fine mapping of causal variants needs to be adjusted for multisite influences, as conditional estimates can be highly biased by interference among linked sites, but ultimately experimental verification of individual effects is needed. Presumably similar conclusions apply not just to eQTL mapping, but to multisite influences on fine mapping of most types of quantitative trait.

摘要

表达数量性状基因座(eQTL)检测已成为揭示遗传风险因素与疾病或临床表型之间关系的重要工具。大多数研究使用单标记线性回归来发现主要信号,随后进行顺序条件建模以检测影响基因表达的次要遗传变异。然而,这种方法假设功能变异分布稀疏,并且它们之间的紧密连锁对其精确位置和效应大小的估计影响很小。我们描述了一系列模拟研究,旨在评估连锁不平衡(LD)对具有典型eQTL效应大小的因果变异精细定位的影响。在存在多位点调控的情况下,即使80%至90%的模拟eSNP与正态分布性状相关,所有次要信号中仍有高达10%可能是统计假象,并且在峰值> 0.8范围内的SNP可信区间中,至少5%但高达四分之一甚至可能不包含因果位点。贝叶斯方法eCAVIAR和DAP(后验确定性近似)在分辨率上仅提供适度改善。鉴于有强有力的实证证据表明基因表达通常受不止一个变异调控,我们得出结论,因果变异的精细定位需要针对多位点影响进行调整,因为条件估计可能会因连锁位点之间的干扰而产生高度偏差,但最终仍需要对个体效应进行实验验证。据推测,类似的结论不仅适用于eQTL定位,也适用于多位点对大多数类型数量性状精细定位的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bba5/5555460/a134f247b6b0/2533f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验