Krause F F, Rosenauer A, Barthel J, Mayer J, Urban K, Dunin-Borkowski R E, Brown H G, Forbes B D, Allen L J
Institute for Solid State Physics and Center of Excellence for Materials and Processes, Bremen University, Otto-Hahn-Allee 1, 28359 Bremen, Germany.
Central Facility for Electron Microscopy, RWTH Aachen University, D-52074 Aachen, Germany; Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Jülich Research Centre, 52425 Jülich, Germany.
Ultramicroscopy. 2017 Oct;181:173-177. doi: 10.1016/j.ultramic.2017.06.004. Epub 2017 Jun 2.
This paper addresses a novel approach to atomic resolution elemental mapping, demonstrating a method that produces elemental maps with a similar resolution to the established method of electron energy-loss spectroscopy in scanning transmission electron microscopy. Dubbed energy-filtered imaging scanning transmission electron microscopy (EFISTEM) this mode of imaging is, by the quantum mechanical principle of reciprocity, equivalent to tilting the probe in energy-filtered transmission electron microscopy (EFTEM) through a cone and incoherently averaging the results. In this paper we present a proof-of-principle EFISTEM experimental study on strontium titanate. The present approach, made possible by chromatic aberration correction, has the advantage that it provides elemental maps which are immune to spatial incoherence in the electron source, coherent aberrations in the probe-forming lens and probe jitter. The veracity of the experiment is supported by quantum mechanical image simulations, which provide an insight into the image-forming process. Elemental maps obtained in EFTEM suffer from the effect known as preservation of elastic contrast, which, for example, can lead to a given atomic species appearing to be in atomic columns where it is not to be found. EFISTEM very substantially reduces the preservation of elastic contrast and yields images which show stability of contrast with changing thickness. The experimental application is demonstrated in a proof-of-principle study on strontium titanate.
本文介绍了一种用于原子分辨率元素映射的新方法,展示了一种能产生与扫描透射电子显微镜中既定的电子能量损失谱方法具有相似分辨率的元素映射的方法。这种成像模式被称为能量过滤成像扫描透射电子显微镜(EFISTEM),根据互易性的量子力学原理,它等同于在能量过滤透射电子显微镜(EFTEM)中使探针通过一个圆锥倾斜并对结果进行非相干平均。在本文中,我们展示了一项关于钛酸锶的原理验证性EFISTEM实验研究。由于色差校正,当前方法具有这样的优势,即它能提供不受电子源中的空间非相干性、探针形成透镜中的相干像差和探针抖动影响的元素映射。量子力学图像模拟支持了实验的准确性,该模拟深入了解了成像过程。在EFTEM中获得的元素映射会受到所谓弹性对比度保留效应的影响,例如,这可能导致给定的原子种类出现在实际上不存在的原子列中。EFISTEM极大地减少了弹性对比度的保留,并产生了对比度随厚度变化而稳定的图像。在一项关于钛酸锶的原理验证性研究中展示了该实验应用。