Department of Neurosciences, University of California, San Diego, La Jolla, California, USA.
Center for Research in Biological Systems, National Center for Microscopy and, Imaging Research, University of California, San Diego, La Jolla, California, USA.
J Microsc. 2021 Aug;283(2):127-144. doi: 10.1111/jmi.13014. Epub 2021 May 3.
The technique of colour EM that was recently developed enabled localisation of specific macromolecules/proteins of interest by the targeted deposition of diaminobenzidine (DAB) conjugated to lanthanide chelates. By acquiring lanthanide elemental maps by energy-filtered transmission electron microscopy (EFTEM) and overlaying them in pseudo-colour over the conventional greyscale TEM image, a colour EM image is generated. This provides a powerful tool for visualising subcellular component/s, by the ability to clearly distinguish them from the general staining of the endogenous cellular material. Previously, the lanthanide elemental maps were acquired at the high-loss M edge (excitation of 3d electrons), where the characteristic signal is extremely low and required considerably long exposures. In this paper, we explore the possibility of acquiring the elemental maps of lanthanides at their N edge (excitation of 4d electrons), which occurring at a much lower energy-loss regime, thereby contains significantly greater total characteristic signal owing to the higher inelastic scattering cross-sections at the N edge. Acquiring EFTEM lanthanide elemental maps at the N edge instead of the M edge, provides ∼4× increase in signal-to-noise and ∼2× increase in resolution. However, the interpretation of the lanthanide maps acquired at the N edge by the traditional 3-window method, is complicated due to the broad shape of the edge profile and the lower signal-above-background ratio. Most of these problems can be circumvented by the acquisition of elemental maps with the more sophisticated technique of EFTEM Spectrum Imaging (EFTEM SI). Here, we also report the chemical synthesis of novel second-generation DAB lanthanide metal chelate conjugates that contain 2 lanthanide ions per DAB molecule in comparison with 0.5 lanthanide ion per DAB in the first generation. Thereby, fourfold more Ln per oxidised DAB would be deposited providing significant amplification of signal. This paper applies the colour EM technique at the intermediate-loss energy-loss regime to three different cellular targets, namely using mitochondrial matrix-directed APEX2, histone H2B-Nucleosome and EdU-DNA. All the examples shown in the paper are single colour EM images only.
最近开发的彩色 EM 技术通过靶向沉积与镧系螯合物偶联的二氨基联苯胺(DAB),实现了对感兴趣的特定大分子/蛋白质的定位。通过电子能量过滤透射电子显微镜(EFTEM)获取镧系元素图谱,并将其以假彩色叠加在常规灰度 TEM 图像上,生成彩色 EM 图像。这为可视化亚细胞成分提供了强大的工具,能够清晰地区分它们与内源性细胞物质的一般染色。以前,镧系元素图谱是在高损耗 M 边缘(3d 电子激发)处获取的,其中特征信号极低,需要相当长的曝光时间。在本文中,我们探索了在其 N 边缘(4d 电子激发)处获取镧系元素图谱的可能性,该边缘位于更低的能量损耗区域,因此由于 N 边缘处的非弹性散射横截面较高,包含更大的总特征信号。在 N 边缘处而不是在 M 边缘处获取 EFTEM 镧系元素图谱,可将信号噪声比提高约 4 倍,分辨率提高约 2 倍。然而,由于边缘轮廓较宽且信号背景比低,传统的 3 窗口方法对在 N 边缘处获取的镧系元素图谱的解释变得复杂。通过使用更复杂的 EFTEM 谱成像(EFTEM SI)技术获取元素图谱,可以规避这些问题。在这里,我们还报告了新型第二代 DAB 镧系金属螯合物缀合物的化学合成,与第一代相比,每个 DAB 分子中含有 2 个镧系离子,而第一代每个 DAB 分子中含有 0.5 个镧系离子。因此,每氧化的 DAB 会沉积 4 倍的 Ln,从而显著放大信号。本文将彩色 EM 技术应用于三个不同的细胞靶标,即使用线粒体基质导向的 APEX2、组蛋白 H2B-核小体和 EdU-DNA,均处于中间损耗能量损耗范围。本文中展示的所有示例均为单彩色 EM 图像。