Suppr超能文献

自身抗体作为多发性硬化症检测和亚型分型的诊断生物标志物。

Autoantibodies as diagnostic biomarkers for the detection and subtyping of multiple sclerosis.

作者信息

DeMarshall Cassandra, Goldwaser Eric L, Sarkar Abhirup, Godsey George A, Acharya Nimish K, Thayasivam Umashanger, Belinka Benjamin A, Nagele Robert G

机构信息

Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA.

Biomarker Discovery Center, New Jersey Institute for Successful Aging, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Department of Geriatrics and Gerontology, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA; Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA.

出版信息

J Neuroimmunol. 2017 Aug 15;309:51-57. doi: 10.1016/j.jneuroim.2017.05.010. Epub 2017 May 19.

Abstract

The goal of this preliminary proof-of-concept study was to use human protein microarrays to identify blood-based autoantibody biomarkers capable of diagnosing multiple sclerosis (MS). Using sera from 112 subjects, including 51 MS subjects, autoantibody biomarkers effectively differentiated MS subjects from age- and gender-matched normal and breast cancer controls with 95.0% and 100% overall accuracy, but not from subjects with Parkinson's disease. Autoantibody biomarkers were also useful in distinguishing subjects with the relapsing-remitting form of MS from those with the secondary progressive subtype. These results demonstrate that autoantibodies can be used as noninvasive blood-based biomarkers for the detection and subtyping of MS.

摘要

这项初步概念验证研究的目的是使用人类蛋白质微阵列来鉴定能够诊断多发性硬化症(MS)的血液自身抗体生物标志物。使用来自112名受试者(包括51名MS受试者)的血清,自身抗体生物标志物能够有效地区分MS受试者与年龄和性别匹配的正常对照及乳腺癌对照,总体准确率分别为95.0%和100%,但无法区分帕金森病患者。自身抗体生物标志物在区分复发缓解型MS患者与继发进展型亚型患者方面也很有用。这些结果表明,自身抗体可作为用于MS检测和亚型分类的非侵入性血液生物标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验